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Abstract
As specialized hardware accelerators such as GPUs be-

come increasingly popular, developers are looking for ways
to target these platforms with high-level APIs. One promis-
ing approach is kernel libraries such as PyTorch or cuML,
which provide interfaces that mirror CPU-only counterparts
such as NumPy or Scikit-Learn. Unfortunately, these libraries
are hard to develop and to adopt incrementally: they only
support a subset of their CPU equivalents, only work with
datasets that fit in device memory, and require developers to
reason about data placement and transfers manually. To ad-
dress these shortcomings, we present a new approach called
offload annotations (OAs) that enables heterogeneous GPU
computing in existing workloads with few or no code modifi-
cations. An annotator annotates the types and functions in a
CPU library with equivalent kernel library functions and pro-
vides an offloading API to specify how the inputs and outputs
of the function can be partitioned into chunks that fit in device
memory and transferred between devices. A runtime then
maps existing CPU functions to equivalent GPU kernels and
schedules execution, data transfers and paging. In data science
workloads using CPU libraries such as NumPy and Pandas,
OAs enable speedups of up to 1200× and a median speedup
of 6.3× by transparently offloading functions to a GPU us-
ing existing kernel libraries. In many cases, OAs match the
performance of handwritten heterogeneous implementations.
Finally, OAs can automatically page data in these workloads
to scale to datasets larger than GPU memory, which would
need to be done manually with most current GPU libraries.

1 Introduction
The public cloud has commoditized specialized hardware
such as GPUs, giving developers a new way to speed up their
applications using these new accelerators. One increasingly
popular way of doing this is to use accelerator-compatible
kernel libraries with APIs that mirror those of popular CPU
libraries. For example, in just the last two years, the Python
ecosystem has seen a rapid explosion of popular GPU li-
braries such as PyTorch [24], cuML [8] and cuDF [7], and the
RAPIDS [9] suite for data science; these libraries mirror the
APIs of popular packages such as NumPy, Scikit-Learn, and
Pandas. In keeping a familiar interface, accelerator libraries
promise a seamless path to supporting new hardware for both
new and existing applications.

Unfortunately, in reality, accelerator libraries for GPUs

are not so simple to adopt into new or existing code. First,
many of these libraries only implement a subset of function-
ality present in their CPU counterparts, e.g., because some
functions are inefficient on parallel architectures such as
GPUs [14, 15, 28]. This means that most applications must
use both CPU and accelerator libraries, thus violating the
promise of seamless integration with new hardware platforms.
In addition, small API differences mean that even supported
functions often warrant application changes. Finally, since
most accelerator libraries operate over data that fits entirely
in device memory, workloads in domains such as data science
cannot seamlessly reap the benefits of new hardware because
their working sets far outsize device memory. Developers
must manually page and transfer data between the accelerator
and CPU, or forego accelerators altogether.

In this paper, we propose offload annotations (OAs), a new
approach for incrementally integrating existing CPU libraries
with emerging accelerator libraries. With this approach, an
annotator (e.g., an application or library developer) adds an-
notations to CPU functions that specify a corresponding ac-
celerator function from an accelerator library. An underlying
runtime uses the annotations to automatically schedule func-
tions either onto the CPU or the accelerator. In our system, we
show that annotations enable end users to use both established
CPU libraries and emerging GPU libraries without having
to change their code or learn a new API. We also show that
our runtime can allow end users to invoke GPU functions
transparently even when data does not fit in accelerator mem-
ory. However, designing and leveraging annotations to offload
computation to accelerators poses a unique set of challenges.

First, applications that mix CPU and accelerator code must
be cognizant of data placement. For example, accelerator li-
braries such as PyTorch [24] can only process data resident in
device memory, and GPU-resident data has an entirely differ-
ent format than CPU-resident data. Our annotations explicitly
keep track of the device on which a particular data value re-
sides, and include a new API to let annotators specify how
to transfer data between devices. In addition, some library
functions that allocate new data, such as numpy.eye() (which
creates an identity matrix), have equivalent functions in an
accelerated library, so OAs let users explicitly identify such
functions. The runtime uses this additional information speci-
fied in OAs to ensure that data is in the correct format on each
device, helping to optimize the computation.

A second challenge in offloading functions to accelera-



tors is memory management. Accelerators generally have far
smaller attached memories than CPUs: this means that large
CPU-resident datasets cannot naively be copied to the accel-
erator in entirety. To address this challenge, OAs leverage
the splitting mechanism of split annotations [23], originally
used for cross function cache pipelining on the CPU, in the
new use case of paging memory. Our runtime partitions in-
puts into chunks that fit in device memory, and automatically
schedules data transfer and function invocation on partitioned
values. Values are partitioned and merged using a user-defined
splitting API. By identifying splittable functions using OAs,
developers can run existing CPU workloads across different
platforms transparently, even if the working set does not fit
in device memory. Some accelerated functions available in
libraries cannot be split into smaller computations, however,
but OAs can still offload the computation up to a certain size.

Finally, a third challenge unique to offloading functions is
determining where to execute annotated functions. Since func-
tions that execute on an accelerator must first transfer their
inputs to device memory, they have an additional associated
data transfer cost. This can negatively impact performance in
cases where the function itself executes quickly. To address
this challenge, our runtime includes a new scheduler that uses
estimates of transfer cost and compute cost to determine when
functions should be executed on the GPU vs. the CPU. We
show that simple linear cost model estimators can yield 26×
performance improvements compared to greedily executing
all supported functions on a GPU.

The adoption of annotation-based approaches has already
seen success in the past with systems such as TypeScript [12,
25]. In the TypeScript community, annotators crowdsource
and share annotations for existing libraries. Unlike approaches
that require building a complete end-to-end compiler, such as
Weld [22] or Delite [31], the annotation-based approach also
allows annotators to incrementally add support for individual
accelerated functions. We hope to see a similar community
develop around OAs to bridge existing CPU libraries with
their accelerator library equivalents.

We implemented OAs by extending the Python runtime for
split annotations, Mozart [23]. Our extended runtime, Bach,
considers the challenges unique to offloading computation
to capture device placement information and schedule com-
putation in a heterogeneous setting. We evaluate OAs by
integrating several CPU-only data processing libraries with
their GPU library equivalents: PyTorch and cuPy for NumPy,
cuDF for Pandas, and cuML for Scikit-learn. Our integration
experience demonstrates the generality of OAs for popular
data science libraries, and the minimal developer effort in-
volved that requires little to no code modifications. On data
science workloads ranging from options pricing to principal
components analysis, OAs are able to achieve up to 1200×
improvement with a median 6.3× over CPU-only code, with
few or no application changes. OAs also enable many work-
loads to use GPUs when the dataset size exceeds the GPU

# Fit.
m1 = sklearn.StandardScaler()
m2 = sklearn.PCA() # or cuml.
m3 = sklearn.KNeighborsClassifier() # or cuml.
X_train = m1.fit_transform(X_train)
+ X_train = transfer(X_train, GPU)
X_train = m2.fit_transform(X_train)
+ Y_train = transfer(y_train, GPU)
m3.fit(X_train, Y_train)
+ for chunk in f:
# Predict.
X_test = m1.transform(X_test)

+ X_test = transfer(X_test, GPU)
X_test = m2.transform(X_test)
result = m3.predict(X_test)

+ result = transfer(result, CPU)
plottinglib.plot(result)

Listing 1: Example data science workload using sklearn.
Lines preceeded with a + show modifications required for
using a GPU with the cuML accelerator library.

memory, which would require manually paging code with the
existing GPU computation libraries.

In summary, we make the following contributions:

• We introduce offload annotations (OAs), an interface for
heterogeneous computing with no library modifications
that allows third-party annotators to incrementally add
accelerated versions of library functions, and manages
the offload and execution of these functions on devices.
The OA interface extends split annotations with support
for representing data in different formats on different
devices and deciding when to offload a computation
based on its estimated transfer size and computation
cost.

• We describe Bach, a Python runtime that uses annota-
tions to capture a lazy task graph of program operations
and schedules execution and data transfer, including al-
locations, in order to improve application performance
while staying within the accelerator’s memory limits.

• We integrate OAs with four kernel libraries for GPU
computation, and show that they can accelerate applica-
tions by a median of 6.3× over the CPU-only version
of the library. We also compare the performance of OAs
to hand-written heterogeneous code that manually com-
bines these libraries with CPU libraries.

2 Motivating Example
To motivate the OA approach, consider the following simple
scenario: A data scientist has a machine learning workload
originally written for the CPU using sklearn. She reads the



data from a file on disk, preprocesses the data, trains the
model, and then tests it on a real dataset (Listing 1).

As her company sends her more and more data, the data
science pipeline takes an order of magnitude longer to run.
She learns about accelerators and accelerator libraries such
as cuDF and cuML built to speed up data science workloads
using GPUs. Since the pipeline was already running on cloud
instances, the data scientist decides to move her code to an-
other instance with accelerators attached.

The online documentation for these kernel libraries
promises a seamless integration experience, offering almost
exactly the same interface as their CPU library counterparts,
but she soon discovers it is not as easy as it seems. Some of the
functions have different names, requiring her to scour the doc-
umentation for functions with the corresponding functionality.
Some functions do not have corresponding implementations
at all, and can run only with the CPU library.

Next, the data scientist analyzes the program and manu-
ally inserts data transfer statements between the GPU and
the host CPU so that data resides on the same device as the
corresponding functions. Since the inputs to the program are
usually read from another step in the pipeline, she assumes the
inputs initially reside on the CPU. Since she initializes some
of the intermediate objects herself, she allocates those directly
on the GPU. Finally, since her plotting library requires the
data to be on the CPU, she transfers the results back to the
CPU at the end of the program.

With most CPU library functions replaced with the cor-
responding GPU library functions, she is ready to run the
program, but it crashes due to insufficient GPU memory. Al-
though her dataset was small enough to fit in CPU memory,
the amount of memory attached to the GPU is significantly
smaller. She writes additional code to page the data transfers
to the GPU in the prediction phase, since the predict com-
putation can be done independently on different data batches.
The training function in the accelerator library cannot be run
in independent batches, but fortunately, her training data is
smaller than the data she predicts on, so that computation can
run as one GPU function call.

Finally, after all the developer effort required to learn and
integrate the GPU libraries, the code runs to completion, and
the data scientist receives the same results on her dataset as
when the pipeline ran only on the CPU. The performance of
her new program has also improved. Nonetheless, the data
scientist’s code is now complex (Listing 1), with many new
function calls and new control logic just to manage the GPU
computation. Furthermore, all this new logic may need to
change in the future as her workload changes or her dataset
changes in size.

3 Design Overview
With offload annotations (or OAs, Figure 1), we reduce the
developer effort for porting an existing workload to the GPU
to just importing the annotated CPU library in place of the

numpy.mul(vol, vol)
numpy.add(rsig, rate)

End User

Annotator

mul = oa(…)(torch.mul)
add = oa(…)(torch.add)

Annotated library
bach.numpy

import bach.numpy
instead of
importnumpy

Application

Bach runtime orchestrates 
execution between CPU and 

accelerator

Figure 1: Overview of writing and using OAs. An annotator
writes annotations to bridge a CPU library with an accelerator
library. An end user imports the new annotated library to
automatically use new accelerators in her existing code.

original CPU library. The annotator could be the kernel library
developer, the end user writing applications, or any other third-
party developer (similar to the open source contributors that
provide type definition files for libraries in TypeScript [12]).
Our system, Bach, uses the information in OAs to automati-
cally offload functions to a GPU, page large datasets, transfer
data across devices automatically, and manage allocations to
minimize data transfer for better performance.

Adding OAs to CPU libraries. First, an annotator identi-
fies a corresponding accelerator library for her CPU library
(e.g., torch for numpy). She then identifies a corresponding
accelerator function for each CPU function she wishes to an-
notate (e.g,. torch.multiply for numpy.mul). The annotator
then writes an OA for her CPU function: the OA specifies the
corresponding GPU function that should be called in place
of the CPU function, and split types for each function in-
put and output (adapted from the split types used in split
annotations [23]). Split types are an interface implemented
by an annotator that provide information about a function
input or output at runtime (e.g., the size of an array). The
annotator can also write special OAs for allocation functions
(e.g., torch.zeros for numpy.zeros), which enable data to be
allocated directly on the device where they will first be used.

OAs extend the original split type interface to provide ad-
ditional information about data placement. In particular, the
annotator must implement a new offloading API for each split
type. Most libraries only require implementing the offloading
API once per data type in the library (e.g., for ndarray in
NumPy). The offloading API specifies (1) where inputs to
a function reside before execution (e.g., in GPU memory or
CPU memory), and (2) how to transfer values from from one
device to another. Since the offloading API extends the split
annotation splitting API, it can also optionally describe how
to split and merge data for data-parallel workloads. Splitting
in OAs is used for paging data into an accelerator with limited
memory (unlike in split annotations, where splitting enables
cross-function cache pipelining on a CPU).

Once an annotator adds OAs and implements the offloading
API for the data types in the CPU library, she can share the
annotation file to allow other end users to reap their benefits.



Using annotated libraries. An end user integrates the an-
notated library into her code by changing the line that imports
the CPU library to import the annotated library instead (the
annotation file is just a Python module).

Generally, little to no code modification is required to use
the annotated library in place of the original CPU library. The
main difference is that Bach, our runtime, uses lazy evaluation
to optimize data transfer across many functions. OAs can
automatically evaluate lazy values in many cases (e.g., when
calling str() in Python), but an end user may have to add
evaluate()—a function automatically provided in annotated
libraries—into her code to explicitly materialize lazy values.

Bach runtime scheduler. Bach builds on split annotations’
Mozart runtime to automatically build and maintain a lazy
task graph. Internally, when a lazy value is materialized, Bach
uses OAs to automatically schedule data transfers and com-
putation, deciding the device on which to run each operation
(§5). Note that scheduling is completely packaged in our run-
time, and does not require any additional annotator or end
user code.

Although the Bach runtime defaults to greedily scheduling
operations on the GPU, the annotator may still provide custom
cost model estimators to the function annotations to assist the
runtime with making scheduling decisions. However, these
cost models are optional and are not usually required to benefit
from OAs, as shown in our evaluation.

4 Offload Annotation Interface
The offload annotation (OA) interface provides a correspond-
ing accelerator function for each function in a CPU library.
The interface also provides a mechanism to discover runtime
information about function arguments and outputs: namely,
how to split inputs into chunks that will fit in device memory,
the device on which an input is allocated before executing
annotated functions, and how inputs can be transferred be-
tween devices. This information is relayed via split types, an
abstraction from split annotations [23]. The OA interface also
includes new alloc annotations, which specify functions that
allocate new data (e.g., numpy.zeros to allocate an array of
zeros). These annotations allow further optimizations when
scheduling data transfer and are described further below.

Listing 2 shows an example of the extended offload split
type API, and Listing 3 show examples of OAs, with numpy

as the CPU library and torch as the accelerator library.

4.1 Primer: Split Types
Split types provide a mechanism that allow a runtime to dis-
cover runtime properties about a value (e.g., size of an array
or dimensions of a matrix). In split annotations, split types
are used to ensure that data is split in a consistent way across
functions to enable safe pipelining of split values. For ex-
ample, a split type will ensure that split arrays passed into a
function together still have the same lengths at runtime.

class DataFrameSplit(OffloadSpliType):
def split(start, end, value):
# Splits a value to enable paging.
return value[start:end]

def merge(values):
# Merges split values
return pandas.concat(values)

def size(value):
# Returns number of elements in value
return len(value)

def device(value):
# Specifies where this value is allocated.
# Used by scheduler to decide where to run
# functions.
if isinstance(value, pandas.DataFrame):
return Device.CPU

else: # if a cuDF DataFrame.
return Device.GPU

def to(value, device):
# Transfers [value] to specified [device].
if device == Device.GPU:
return cudf.from_pandas(value)

else:
return value.to_pandas()

Listing 2: Example implementation of the offload split type
API for Pandas and cuDF DataFrames. The API adds two new
functions—device and to—to the original split type API.

To use split types, an annotator implements an API that the
runtime calls to interact with runtime values. In split annota-
tions, split types provide a split function to partition values
into chunks, and a merge value to merge split values together.
The API also contains a size function for discovering the
size of inputs (e.g., to determine split sizes). Listing 2 shows
an example of these functions for DataFrames. We extend
the split type API to allow our runtime to offload values onto
other devices.

When splitting and merging data in a non-trivial way, end
users must ensure the correctness of the application. Many
data science applications operating on large collections of
data, as in our workloads, are trivially parallelizable. Even
when splitting and merging is impossible due to algorithmic
correctness constraints or unavailable kernel library imple-
mentations, applications can still benefit from automatic of-
floading at smaller data sizes.

4.2 Offload Split Types
In addition to specifying how data should be split and merged,
our extended offload split types additionally specify (1) the
device on which a value is allocated, and (2) how to transfer
a value between devices.

Device API. The device method specifies the device its
input resides on. The method might check the instance type



# Offload split types for binary function inputs.
args = (NdArraySplit(), NdArraySplit())
# Offload split type of return value.
ret = NdArraySplit()

# OAs to provide offload split types for each
# argument and return value, as well as a corresonding
# accelerator function.
np.add = @oa(args, ret, func=torch.add)
np.subtract = @oa(args, ret, func=torch.sub)

# Allocation function.
np.empty = @oa_alloc(NdArraySplit(), func=torch.empty)

Listing 3: Offload annotations using numpy and torch.

of the input, or properties of the input. For example, NumPy
arrays are on the CPU while CuPy arrays are on the GPU.
Torch tensors can reside on either device, and have a property
to describe where a particular value resides.

To API. The to method transfers the provided value to
the target device. This usually involves converting a CPU
library type (e.g., numpy array) to an accelerator library type
(e.g., torch tensor) using a accelerator library function (e.g.,
torch.to()). The ability to transfer values is necessary to
ensure that values reside on the device where the operation
will run.

4.3 Using Offload Split Types in Annotations
OAs assign each input and output an offload split type. Ad-
ditionally, the OA provides the name of the corresponding
accelerator library function. If the accelerator function has a
different function signature, an annotator can wrap the accel-
erator function in a lambda with an interface consistent with
the CPU function.

Example. Listing 3 shows several examples where NumPy
functions are annotated using PyTorch. The OAs assign the
two arguments of np.add and np.subtract the offload split
type NdArraySplit. This split type will define how to split,
merge, and transfer ndarray and torch.tensor values. It will
also tell Bach whether a particular value passed to these func-
tions is already on the accelerator or CPU using the device

API. The outputs of these functions also have the offload split
type NdArraySplit.

4.4 Allocation Function Annotations
One unique challenge the runtime faces is avoiding unnec-
essary data transfers, which can lead to performance degra-
dation. Consider when data is allocated on one device, and
then immediately passed to a function that can be offloaded.
In this case, it is more efficient to allocate the data directly on
the device of the following function.

To support this, OAs provide a special kind of annota-
tion, called an alloc annotation, which specify that the an-
notated function performs allocation. Like other annotated
functions, annotators provide CPU allocation functions with
an equivalent accelerator library functions (e.g., torch.zeros
for numpy.zeros). Allocation functions differ from regular
functions in one key aspect: their inputs do not need to be
annotated with offload split types. Outputs are still annotated
with a offload split type, similar to a regular function. CPU-
only split annotations did not require allocation annotations
since they did not need to avoid expensive data transfers.

Example. In Listing 3, the np.empty function allocates data:
its OA specifies a corresponding PyTorch function, but does
not provide offload split types for inputs. Its output has the
same NdArraySplit offload split type.

5 Bach Runtime
The Bach runtime uses the information in the OAs to sched-
ule and execute functions across the CPU and accelerator.
Figure 2 provides an overview of the Bach runtime.

Step 1: Construct Dataflow Graph. Bach’s first goal is to
extract a dataflow graph from the user program. To do this,
Bach uses the same approach as Mozart: when annotators ap-
ply an annotation to a function, Bach wraps it to return a lazily
evaluated placeholder object, using Python’s metaprogram-
ming facilities [23]. When placeholders objects are passed to
other annotated functions, Bach stitches these functions into
a task graph. This task graph captures dependencies between
annotated functions: an edge between two operations exists if
the output of one operation is used as an input into another.

Two scenarios trigger evaluation of the task graph. First,
Bach detects accesses to the lazy placeholder objects by inter-
cepting certain Python methods (e.g., str to convert an object
into a string, or __getitem__ to index into a collection). Inter-
nally, the placeholder object will trigger evaluation of the full
task graph required to build it, and then forward these method
invocations to the evaluated object. For example, this means
that placeholder objects will be evaluated if the user passes
them to print(). Alternatively, the user can also explicitly
call an evaluate() function to trigger execution.

Step 2: Estimate Data Size and Allocate. In order to cor-
rectly partition the data for splitting, Bach must estimate the
data size by using the size() API on the program inputs. Un-
like in Mozart, Bach can lazily allocate values to optimally
place data on the same device as the first function that uses
that value. However, if all the program inputs are lazy allo-
cations, there are no available values with which to estimate
data size. Thus Bach must allocate lazy values before starting
execution to estimate the data size.

Bach decides where to allocate each lazy value based on
the device of the first function to use the value. OAs differ
from split annotations in this regard because they need to
decide which device to run each function on. A function can
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Figure 2: Overview of the steps involved in Bach’s runtime. Step 1 triggers evaluation of the dataflow graph with an access to a
lazy value. Step 2 allocates the lazily allocated nodes and estimates the program data size. Step 3 dynamically schedules the
instructions across devices, inserting data transfers and paging the inputs.

# Heuristic for estimating data transfer cost.
def transfer_estimator(ty, values, device):

x = ty.size(values)
return a * x + b

# Heuristic for estimating compute cost.
def compute_estimator(ty, values, device):

x = ty.size(values[0])
if device == CPU:

return a_cpu * x + b_cpu
else:

return a_gpu * x + b_gpu

Listing 4: Linear estimators for estimating data transfer and
compute cost.

run on the accelerator if it has an oa or oa_gpu annotation, and
if its inputs either can be transferred to the device or already
reside on the accelerator. All functions must be able to run on
the CPU, which is the default device.

To decide where to run this first function, Bach estimates
the data transfer costs and compute costs involved with run-
ning the function on either device and suggests the device
with the lower cost. These cost estimates are calculated us-
ing heuristic functions optionally provided by the user. The
heuristic functions are functions of the input values, their
offload split types, and the target device, and we provide a
simple linear cost model estimator (Listing 4). If cost models
are not provided or all other inputs are also lazy allocations,
Bach naively suggests the function run on the accelerator if
possible. Otherwise Bach defaults to the CPU.

Step 3: Schedule and Execute. Once the data size is esti-
mated, the operations in the task graph are converted into a
list of instructions that can be executed serially for each split
piece. To do this, the Bach runtime performs a topological

sort of the task graph to obtain a list of instructions that satisfy
data dependencies.

The device an instruction runs on is decided dynamically
right before executing the instruction. The instruction first
determines if it is eligible to run on the accelerator based on
the requirements described in the previous section. If it is
not eligible, it defaults to running on the CPU. Otherwise,
the runtime performs the same cost model analysis as when
deciding where to lazily allocate a value to determine which
device to run the instruction on. Unlike before, all the inputs
will be fully evaluated. After deciding which device to use,
the instruction transfers inputs that are on a different device
using the to() API in the offload split type for the input. Bach
discovers where inputs are prior to executing functions by
using the device() API. As before, if cost models are not
provided, Bach defaults to using the accelerator if possible.

When executing functions, Bach uses the ability to partition
data to enable paging: this allows for large, CPU-memory-
resident datasets to be streamed through device memory, even
when device memory is far smaller than the CPU memory. To
achieve this, Bach splits the inputs into chunks based on the
estimated data size and a default piece size. Inputs are split
using the split() API provided in the input’s offload split
type. For each chunk, the program executes the generated list
of instructions. The chunk is transferred to the device of the
input argument if its current device does not match the device
of the instruction. Each chunk is moved out of the device
after the functions finish executing, to free space for the next
chunk.

The final outputs are moved to the CPU by default after
execution, but the end user can elect to keep the output on the
accelerator by explicitly calling evaluate(). If paging is used
to stream data through a device, the output is always allocated
on the CPU (since it may not fit entirely in device memory).



6 Design Discussion
As described, OAs and the Bach runtime are designed specifi-
cally for offloading computation to a single GPU using Python
kernel libraries. In this section, we discuss the possibilities
of extending OAs for use with multiple GPUs or with other
programming languages and accelerators.

Multiple GPUs. Similar to how split annotations split data-
parallel workloads across CPU cores, we can extend OAs to
automatically split computation across multiple GPUs. The
implementation would need to modify the scheduler to recog-
nize multiple GPU targets, and factor data transfer and con-
currency into scheduling decisions. We do not expect these
modifications to impact end user experience.

Non-Python programming languages. We chose to im-
plement Bach in Python since Python is one of the most
popular languages for data analysis, with a vast ecosystem of
Python GPU libraries. We believe our implementation uses
principles common to many programming languages and do
not rely on any language-specific hacks. Specifically, “an-
notations” in Python are simply functions that wrap other
functions, and the runtime logic is language-agnostic. Mozart
[23] demonstrates that the annotation framework is viable in
C++, so we imagine we could implement a similar runtime
for C++ for GPU libraries like Thrust.

Non-GPU accelerators. Any accelerator with a kernel li-
brary that closely mirrors a CPU-only library and an API to
offload data to that accelerator could potentially be suitable
for OAs. We may also be able to adapt split data in streaming
accelerators to overlap data transfer with computation like in
CUDA streams. Data transfer costs are an issue common to
many accelerators, and we could apply ideas about memory
management and data placement from OAs even if the system
cannot be used directly.

7 Library Integrations
We annotated three different CPU-only Python libraries for
data science and machine learning: NumPy, Pandas, and
Scikit-learn. The annotations used four different GPU ker-
nel libraries: CuPy, PyTorch, cuDF, and cuML. The latter two
kernel libraries are part of the RAPIDS [9] suite.

NumPy. NumPy is a library for high-level math opera-
tions on multi-dimensional arrays and matrices on the CPU.
NumPy was the most popular library in terms of number of
accelerator library equivalents. In their online documentation,
these accelerator libraries directly claim to provide a NumPy-
like API. CuPy is described as a NumPy-like API accelerated
with CUDA, while PyTorch is described as a replacement
for NumPy that leverages the power of GPUs. We integrate
NumPy with CuPy and PyTorch in two separate OA-libraries,
replacing NumPy ndarrays with CuPy ndarrays and PyTorch
tensors.

CPU-only GPU kernel LOC # Split #
library library Types Funcs

NumPy CuPy 103 1 20
NumPy PyTorch 90 1 10
Pandas cuDF 241 7 27
Scikit-learn cuML 81 2 12

Table 1: Integration effort for annotating various libraries.
Lines of code include annotations, split type transfer functions,
and splitting functions.

Pandas. Pandas is a data analytics library for operating
on structured table-like or time series data. The cuDF accel-
erator library provides a Pandas-like API. We replace Pan-
das DataFrame and Series data types with the corresponding
cuDF types.

Scikit-learn. Scikit-learn is a popular machine learning li-
brary. Machine learning is a natural fit for the GPU with its
dense linear algebra operators. The cuML library’s Python
API attempts to closely match the Scikit-learn API.

7.1 Integration Experience
From our experience, library integrations required around
130 lines of code per library (Figure 1). The most lines of
code come from implementing the offload split type API for
transferring, splitting, and combining types. However, the
split and combine API is optional if a user does not need to
page large datasets. In the simplest and most common case, an
OA requires only a single line of code per function to specify
the offload split types of inputs and outputs, and the name
of the kernel library function. These annotations resemble
boilerplate code when libraries repeat a common pattern, like
binary operations with a single output in NumPy. In more
complex function annotations, the benefit of OAs is that it
only needs to be done once in the annotated library as opposed
to every instance in every workload.

7.1.1 Straightforward Drop-In Replacements

Every library has a straightforward way to transfer data to the
appropriate device. Most accelerator library types automati-
cally reside on the GPU, so using CuPy’s ndarray or cuDF’s
DataFrame automatically transfers the data to the GPU. Scikit-
learn can use either CuPy’s ndarray or cuDF’s DataFrame as
the underlying representation. PyTorch tensors can reside on
both CPUs and GPUs, so the transfer implementation from
Numpy ndarray first converts the ndarray to a torch.Tensor

(a zero-copy cast) and then calls a method on the tensor to
transfer it to the GPU.

Just as many accelerator libraries claim to closely re-
semble the CPU libraries they attempt to replace, many
accelerator library functions are indeed a drop-in replace-
ment for the corresponding CPU library function. For ex-



ample, numpy.add(), cupy.add(), and torch.add() are the
same across all three libraries. Sometimes, the method names
are trivially different but represent the same functionality,
like numpy.arcsin() and torch.asin(). Scikit-learn’s API
utilizes a complex module structure that does not exist in
cuML (e.g., sklearn.decomposition.PCA vs cuml.PCA), so an-
notators sometimes must mock module structure to make
integration as seamless as possible.

7.1.2 Different Function Specifications

Even if two CPU and kernel library functions appear to be
equivalent based on name, the annotator must be careful to
ensure the function parameters and specifications are identical.
For example, the array allocation functions numpy.ones() and
torch.ones() both take a parameter dtype to specify the data
type of the array. However, NumPy can accept strings like
‘int8’ as a parameter, while PyTorch only accepts library-
defined types like torch.int8. In this case, the annotator must
write a custom wrapper that converts function parameters.

We experienced another challenge involving different func-
tion specifications when integrating Pandas with cuDF. Both
pandas.read_csv() and cudf.read_csv() read a CSV into a
DataFrame object. In Pandas, the squeeze parameter causes
the function to return a Series if the parsed data only contained
one column. To achieve the same functionality in cuDF, which
does not have this parameter, we wrote a custom function that
converted the returned DataFrame into a Series if the squeeze
parameter was included. Of the 48 parameters in v0.25.2 of
pandas.read_csv()’s documentation, others are also bound
to not exactly match the specifications in cuDF and require
special implementation.

7.1.3 Missing Functions

When a function is missing from an accelerator library,
any library annotator can annotate the library with a cus-
tom function. We implemented a custom GPU version of
the Pandas mask() function, used for replacing values in a
DataFrame based on a conditional DataFrame, by using the
series.loc[cond] = val notation from the cuDF library in-
stead. In our cuML annotations, we mimicked Scikit-learn’s
StandardScaler() model using CuPy operations for remov-
ing the mean and scaling to unit variance on the GPU. In
general, cuML’s preprocessing library is far behind Scikit-
learn’s, potentially because Scikit-learn’s functionality is easy
enough to achieve with other accelerator library functions.

In other cases, functions do not exist because the algorithm
required to provide the functionality is either impossible or
simply unsuitable for the GPU. In particular, many Pandas
functions do not work in cuDF when string operations are in-
volved, requiring the program to execute on the CPU. Though
libraries like nvStrings and cuStrings are working to close
the gap in text processing on the GPU, the state of strings on
the GPU today still requires the developer to have a deeper
understanding of its literal representation on the GPU.

Workload Ops CPU Library Max Speedup

Black-Scholes 39 NumPy1 5.7×
Black-Scholes 39 NumPy2 6.9×
Haversine 19 NumPy1 0.81×
Haversine 19 NumPy2 1.7×
Crime Index 15 Pandas 4.6×
DBSCAN 7 NumPy1/Sklearn 1200×
PCA 8 Sklearn 6.8×
TSVD 2 Sklearn 11×

Table 2: The evaluated workloads, the number of annotated
function operators, and the CPU Python libraries used by each
workload. The median speedup across workloads is 6.3× with
a maximum speedup of 1200× on DBSCAN. Annotated with
CuPy1. Annotated with PyTorch2.

7.1.4 Multi-Library Integration

Just as libraries in the Python data science ecosystem use each
other in their implementations, annotated libraries must also
be able to import and operate on other annotated libraries. In
the CPU ecosystem, Scikit-learn’s functions use the NumPy
ndarray, while in the GPU ecosystem, cuML’s functions use
the CuPy ndarray. In our annotated Scikit-learn library, we
analogously import the NdArraySplit type from our anno-
tated NumPy library to define the argument and return types
in the OAs. As OAs grow in popularity, we imagine an ecosys-
tem of increasingly-interconnected annotated libraries that
allow seamless execution across multiple devices in existing
workloads.

8 Evaluation
We ran experiments on a 56-CPU server (2× Intel E5-2690
v4) with 512GB of memory, running Linux 4.4.0. The ma-
chine has a single NVIDIA Tesla P100 GPU with 16GB of
memory and CUDA 10.2 installed. Each result is the median
of five runs, with one warm-up run omitted to initialize the
CUDA driver. Workload runtimes are measured end-to-end,
including allocation and synchronization operations at the end.
Our source code is available at https://github.com/stanford-
futuredata/offload-annotations.

8.1 Workloads
We evaluated offload annotations on a variety of workloads
adapted from common mathematical formulas, data science
library tutorials, and popular online blog posts (Table 2).

Black-Scholes [1]. Determines the theoretical value for a
large array of call or put options.

Haversine [3]. Determines the great-circle distance be-
tween points on a sphere.

Crime index [4]. Reads population and robbery data from
a file on disk and calculates a numerical crime index score.

https://github.com/stanford-futuredata/offload-annotations
https://github.com/stanford-futuredata/offload-annotations


DBSCAN [5]. Standardizes a dataset with 256 features
around 32 centers, and clusters the data with the DBSCAN
algorithm, analyzing the predicted labels on the CPU.

PCA [6]. Standardizes training data and reduces the di-
mensionality with PCA, then classifies the points with K-
Neighbors. Predicts the results, followed by plotting.

TSVD [10]. Applies the linear dimensionality reduction
algorithm to a synthetic dataset with 512 features.

8.2 Results
Figure 3 showcases the performance of the data science and
machine learning workloads on inputs of various sizes. We
evaluate the workloads on a CPU-only implementation, a
handwritten accelerator kernel implementation, and an anno-
tated implementation with Bach.

We verified the numerical results of the workloads for cor-
rectness against each implementation. In the machine learning
workloads, we selected parameters that produced reasonable
results given the inputs (e.g., DBSCAN predicted 32 clusters
and PCA classified points with greater than 90% accuracy).
We maintained the same parameters for each implementation
to ensure the parameters did not affect the runtime.

The results show that with less developer effort, Bach is
able to match the performance of handwritten GPU imple-
mentations, scale to larger input data sizes that normally cause
the GPU to run out of memory, and outperform CPU library
implementations. We now discuss these results in more detail.

8.2.1 Results Summary

We make three main observations.
First, Bach matches the performance of handwritten GPU

implementations in all workloads. Bach selects which CPU
library functions to offload and how to transfer data, with
minimal developer effort.

Second, Bach scales to larger input data sizes that normally
cause the handwritten GPU implementations to run out of
memory. In most workloads, Bach’s performance continues to
scale at the same rate as before the GPU implementation runs
out of memory, giving the appearance of running the same
program on a GPU with infinite memory. DBSCAN is the
only workload that cannot be split since the clustering model
must be fit on all data at once. However, this is not a significant
limitation since DBSCAN also has the largest runtime, with
Bach taking 7.5 hours to run at the largest piece size before
running out of memory, and the CPU implementation taking
considerably more for the same input size.

Third, Bach outperforms CPU implementations for almost
all workloads. One exception is Haversine Torch, which has
worse performance than the CPU implementation when pag-
ing large datasets due to the overhead from the additional data
transfers. Another exception is PCA at data sizes below 212.
We attribute this to overheads associated with initialization
and launching GPU kernels with significant launch overhead.

CPU implementations outperform Bach for other workloads
as well, but only for small input sizes when runtimes are in
milliseconds or less.

8.2.2 Runtime Distributions

Workloads that benefit from GPU acceleration are suitable
for acceleration using OAs. At a high level, the decision to
use the GPU is a tradeoff between expensive data transfers
and faster compute. The impact of OAs, and more broadly the
impact of the GPU, depends on the distribution of runtime
between data transfer, computation, and memory allocation
in each workload (Fig. 4).

Allocation. Crime Index spends 93% of its total runtime of
29.74s on allocating data. In particular, the workload reads
1GB of data into memory before performing a series of fast
numerical operations and calculating a single number, the
crime index, as an output. Managing memory allocations are
particularly important for expensive I/O operations like read-
ing files from disk. Workloads with these kinds of operations
particularly benefit from lazy allocation.

Though allocation can be fast on either device, the pri-
mary performance benefit of lazy allocation is eliminating
the additional data transfer required to move the input to the
appropriate device. At large data sizes that do not fit in GPU
memory, the initial memory must instead be allocated on the
CPU where it does fit and paged into GPU memory using
data transfers. As shown by the dotted lines in Fig. 3, beyond
a specific data size, Crime Index, Haversine Torch, and Black-
Scholes Torch all have additional overhead when paging large
data sets due to the extra initial data transfer.

When the Crime Index (Fig. 3c) dataset fits in GPU mem-
ory and the workload is able to use lazy allocation, an ad-
ditional million rows of data increases the runtime by only
50 ms, compared to 190 ms when the dataset does not fit in
GPU memory. The dataset size exceeds GPU memory beyond
227 ≈ 100 million rows. We calculated these overheads as an
average of the scaled Bach implementation runtimes for log
data sizes 21-26 and 27-31, respectively. We do not consider
data sizes below 221 to discount the small absolute scheduler
overheads that are independent of data size.

Data Transfers. Haversine CuPy and Black-Scholes CuPy
spend 52% and 60% of their total runtimes of 2.85s and 2.60s
on data transfers (Fig. 4). Both workloads apply a sequence
of fast numerical operations on large arrays initialized on
the CPU, which must be transferred to the GPU. The work-
loads output more large arrays which must be transferred
back. However, Black-Scholes still beats the CPU library im-
plementation with Bach at all sizes, meaning larger absolute
performance gains at larger input sizes.

As the less computationally-intensive workload, Haver-
sine is more significantly affected by additional data transfers
when paging large datasets, no longer beating the CPU im-
plementation at large dataset sizes. It should be noted that in
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(a) Black-Scholes (CuPy).
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(b) Black-Scholes (Torch).
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(c) Crime Index.
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(d) Haversine (CuPy).
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(e) Haversine (Torch).
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(f) DBSCAN.
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(h) TSVD.

Figure 3: Runtime vs. input data size for the workloads in Table 2. Bach is able to match the performance of the corresponding
GPU library for most applications. The framework in parentheses refers to the GPU library used by Bach in the workload. The
dotted line represents the input data size at which the GPU runs into an out-of-memory exception; Bach is able to run workloads
past this size by paging chunks in and out of GPU memory. (Log2 piece size = 27, 27, 21, 21, 26, 22, 12, 20 from (a-h))
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Figure 4: Proportion of total runtime split between mem-
ory allocation, data transfer, compute time, and runtime over-
head in various workloads using Bach. Haversine and Black-
Scholes mostly consist of data transfers; PCA, DBSCAN, and
TSVD are compute-heavy; Crime Index spends the most time
on allocation. (Log2 data size = 27, 28, 27, 19, 12, from top
to bottom.)

absolute terms, the total time spent on data transfers for these
workloads is relatively small. However, it is still important
to optimize wherever possible, since the overheads can be
exacerbated at scale or the applications using these pipelines
might require real-time results.

Computation. DBSCAN and PCA, on the other end of the
spectrum, are computationally-intensive workloads that are

highly optimized for the GPU. In DBSCAN, data transfer took
less than 1% of the total runtime of 130.81s, compared to the
94% spent on compute (Fig. 4). PCA spent 95% of the total
runtime of 1.02s on compute. Machine learning models, with
their parallelizable and computationally-intensive numerical
operations, are particularly suited for the GPU.

8.2.3 Scheduling

The dynamic scheduling algorithm has minimal effect when
all program inputs can be lazily allocated. In this case, all
program inputs start out on the GPU if possible, even if the
data size is small. Even though execution would have been
been faster exclusively on the CPU, it is no longer worth
transferring the inputs back to the CPU due to the overheads
involved. This occurs in all workloads except the machine
learning workloads: DBSCAN, PCA, and TSVD.

Among the machine learning workloads, we provided cost
estimators to the TSVD workload to enable dynamic schedul-
ing. DBSCAN already optimally executes the entire program
on the GPU for all data sizes, and would not benefit from dy-
namic scheduling. We did not evaluate the dynamic scheduler
on PCA, though it exhibits a similar runtime profile to TSVD.

In the TSVD workload, we used the linear estimators in
Listing 4 as heuristics for transferring the input ndarray and
computing the model’s fit() function. In the transfer estima-
tor, we use parameters a = 1 and b = 0 to indicate that data



transfer is proportional to the size of the data regardless of de-
vice. In the compute estimator, we selected parameters based
on the equilibrium point between and the CPU and kernel
library lines in Figure 3h. We use a_cpu = 2 and b_cpu = 0

to indicate that on the CPU, computation is highly correlated
to input size. For the GPU, we use a_gpu = 0 and b_gpu=14

to indicate that the computation is extremely cheap but incurs
kernel launch overheads.

The result of using these linear estimators is a threshold
scheduling algorithm that causes the total runtime of TSVD to
be the minimum of the CPU library implementation and GPU
library implementation (Fig. 3h). The scheduler switches from
greedy GPU scheduling to CPU-only scheduling below the
equilibrium data size 214. Below this data size, the GPU im-
plementation remains constant at around 500 ms, while the
CPU and Bach implementations become as low as 20 ms for
data size 210. Thus Bach improves the TSVD runtime by up to
480 ms with the dynamic scheduler estimators, as it otherwise
would have defaulted to using the kernel library.

It should be noted that in these workloads, the dynamic
scheduler only generates an advantage at smaller data sizes
where the overhead of GPU initialization is more pronounced.
CPU libraries also tend to benefit from cache performance
cliffs, which is why the CPU runtimes are not perfectly linear
at smaller data sizes. In these cases however, the absolute
runtime improvements from using the dynamic scheduler are
small. In general, workloads do not require the annotator to
implement any cost model at all to benefit from OAs espe-
cially at larger data sizes, where the execution is more likely
to perform better on the GPU with the greedy scheduler.

8.2.4 Discussion

Our experience integrating multiple kernel libraries with their
CPU library equivalents gave us several interesting insights
into the existing Python ecosystem for GPUs, including the
lack of GPU kernels for several CPU functions and the differ-
ences in seemingly identical kernel library implementations.

Missing GPU implementations. Black-Scholes CuPy
and PCA both contained functions without kernel li-
brary equivalents, the numpy.erf() error function and
sklearn.StandardScaler(), respectively, despite these func-
tions being trivial to run on the GPU. We addressed these
performance issues in different ways.

In Black-Scholes, we wrote a custom GPU function to an-
notate numpy.erf() and eliminate additional data transfers
that disrupted a numerical analysis pipeline that otherwise ran
completely on a GPU. We copied the implementation from
a file in CuPy’s experimental folder for SciPy routines. This
example demonstrates that regardless of whether the kernel
library developer or third-party annotator contributes to an
annotated library, annotations can make it easier to incremen-
tally add support for GPUs into an existing workload.

Though we could have implemented a custom GPU func-
tion for sklearn.StandardScaler(), we did not do so because

(a) CuPy.

(b) PyTorch.

Figure 5: The NVIDIA Visual Profiler visualization of Black-
Scholes annotated with CuPy and PyTorch, when paging large
datasets into GPU memory. (Data size = 228; Piece size = 227)

the compute time for this numerical preprocessing step was
small in comparison to the prediction part of the workload,
and the performance impact would not have been significant.

CuPy vs PyTorch. We were able to observe subtle differ-
ences between CuPy and PyTorch when integrating them with
the NumPy data science library. When paging large datasets,
annotated PyTorch incurred a higher overhead from the ad-
ditional data transfers compared to annotated CuPy. Using
the NVIDIA Visual Profiler, we observed that while PyTorch
explicitly executed the memory transfers and kernels that
we invoked, CuPy was significantly more complicated (Fig-
ure 5). In particular, CuPy made several calls to functions like
cudaHostAlloc() and cuModuleLoadData(). These extra func-
tions may have allowed CuPy to perform more efficient data
transfers when paging large datasets, incurring less overhead.

9 Limitations
Without a more sophisticated scheduling algorithm, the end
user may not get optimal performance using an OA-annotated
library since all possible annotated functions will execute on
the accelerator by default. Some functions, such as specific
machine learning algorithms or analytics operations like joins,
may be more efficient on the CPU in some cases. Although
GPU scheduling is a complex problem, we found that greedy
scheduling was effective in many applications. Though we
cannot definitively state whether a holistic scheduler is better,
we believe this problem is worth exploring and can utilize the
information captured in the runtime’s dataflow graph.

Another limitation is the need, in some cases, for the end
user to provide cost models to their workload. It is difficult
to know what constitutes a good cost model, much less an



optimal one. With OAs, the end user can at least more easily
evaluate different models and their downstream scheduling
decisions with little code modification. In this case, the end
user can simply change a few parameters and re-run the ap-
plication, as opposed to re-inserting data transfer statements
into the application code for each schedule. However, optimal
scheduling remains a complex problem.

OAs are also unable to apply some types of low-level op-
timizations that require changes to the accelerator library
functions. For example, the interface for CUDA streams, a
method for overlapping data transfer and compute, is unavail-
able in cuDF and has a library-specific interface in PyTorch.
Because OAs rely on diverse, existing libraries to provide op-
timized kernel implementations, indirectly calling into lower-
level CUDA libraries like cuBLAS, cuDNN, and Thrust, they
cannot coordinate calls to interfaces such as CUDA streams
across these libraries. Nonetheless, users combining these
accelerator libraries by hand would face the same limitation.

10 Related Work
OAs build on split annotations [23], which provide per-
function annotations over existing CPU-based libraries to
enable cross-function data pipelining and improved cache uti-
lization. OAs extend split annotations by considering several
new problems unique to accelerators, including data transfer
and allocation across devices, memory limits of accelerators,
and the problem of scheduling computations and transfers
across CPUs and accelerators. These problems were not con-
sidered in the design of split annotations, so they require both
an extended annotation interface (§4) and a different runtime
and scheduler (§5).

Existing accelerator libraries such as PyTorch [24],
cuDF [7], RAPIDS [9], and cuML [8] provide interfaces for
targeting GPUs that intend to mirror CPU library APIs. How-
ever, they usually cannot handle data that does not fit in the
accelerator memory, only support a subset of their CPU coun-
terparts, and invariably involve application rewrites. OAs are
a system designed to bridge these shortcomings, by leverag-
ing new accelerator implementations of library functions but
using annotations to automatically page and schedule work
across the accelerator and CPU in complex applications that
call multiple library functions.

Another popular approach for targeting heterogeneous plat-
forms is compilation, where a compiler generates code (e.g.,
CUDA) underneath an existing library interface. Several solu-
tions exist for data analytics [20–22, 27, 31, 34] and machine
learning [11, 13, 30]. As one example, Numba [2] compiles
NumPy code into an intermediate representation (IR), and
then to optimized CPU or GPU code. However, compilers
trade off good performance for high complexity: they are dif-
ficult to implement and to integrate into existing libraries, and
the generated code may not match the performance of heavily
hand-optimized kernels such as linear algebra functions [23].
In contrast, annotation-based approaches such as split annota-

tions achieved similar speedups to these compilers in many
cases with substantially less developer effort (e.g., 10× less
code than accelerating functions with Weld in the Mozart
evaluation [23]) by leveraging individual, hand-written kernel
functions and only optimizing the data movement across them.
Like split annotations, OAs propose using expert-written ker-
nels to offload computations rather than attempting to gener-
ating code that matches the performance of these kernels.

Several existing systems schedule tasks in a heterogeneous
environment [16–19, 26, 32, 33]. Our system primarily aims
to provide an interface to bridge existing CPU and GPU code.
The algorithms presented in these systems are complementary,
and can be used to schedule the task graphs produced by OAs.

Hardware-portable languages like OpenCL [29] provide a
common interface to target both CPU and accelerators. How-
ever, they require end users to write custom code in these
languages, whereas our goal is to leverage optimized CPU
and accelerator kernels that have already been written by ex-
pert developers and automatically invoke these kernels in an
application written using high-level APIs.

11 Conclusion

We have presented offload annotations (OAs), a new approach
for bridging existing CPU libraries with emerging GPU li-
braries with no library code changes. Annotators use OAs
to specify an accelerator function for a corresponding CPU
function, and to define how inputs to a function can be trans-
ferred between devices. Optionally, annotators can also anno-
tate allocation functions and provide cost model estimators
that assist the runtime in making scheduling decisions. Our
runtime, Bach, uses the information encapsulated in OAs to
automatically schedule functions in an end-user application
across devices, manage data transfer, and page large datasets.
We apply OAs to several existing to several existing CPU
libraries and show that they can improve their by up to 1200×
and a median of 6.3× by offloading work to a GPU, with little
to no code changes. We also show that OAs enable workloads
that could previously not fit in GPU memory to reap the ben-
efits of hardware acceleration, without manual effort by the
application developer.
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