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Abstract

Deep Learning models have enabled state-of-the-art results across a broad range of applications.

Training these models, however, is extremely time- and resource-intensive, taking weeks on clus-

ters with thousands of expensive accelerators in the extreme case. As Moore’s Law slows down,

numerous parallel accelerators have been introduced to meet this new computational demand. This

dissertation shows how model- and hardware-aware optimizations in software systems can help in-

telligently navigate this heterogeneity. In particular, it demonstrates how careful automated schedul-

ing of computation across levels of the software stack can be used to perform distributed training

and resource allocation more efficiently.

In the first part of this dissertation, we study pipelining, a technique commonly used as a per-

formance optimization in various systems, as a way to perform more efficient distributed model

training for both models with small training footprints and those with training footprints larger

than the memory capacity of a single GPU. For certain types of models, pipeline parallelism can

facilitate model training with lower communication overhead than previous methods. We intro-

duce new strategies for pipeline parallelism, with different tradeoffs between training throughput,

memory footprint, and weight update semantics; these outperform existing methods in certain set-

tings. Pipeline parallelism can also be used in conjunction with other forms of parallelism, helping

create a richer search space of parallelization strategies. By partitioning the training graph across

accelerators in a model-aware way, pipeline parallelism combined with data parallelism can be up

to 5× faster than data parallelism in isolation. We also use a principled combination of pipeline

parallelism, tensor model parallelism, and data parallelism to efficiently scale training to language

models with a trillion parameters on 3072 A100 GPUs (aggregate throughput of 502 petaFLOP/s,

which is 52% of peak device throughput).

In the second part of this dissertation, we show how heterogeneous compute resources (e.g.,

different GPU generations like NVIDIA K80 and V100 GPUs) in a shared cluster (either in a pri-

vate deployment or in the public cloud) should be partitioned among multiple users to optimize

objectives specified over one or more training jobs. By formulating existing policies as optimization

problems over the allocation, and then using a concept we call effective throughput, policies can

be extended to be heterogeneity-aware. A policy-agnostic scheduling mechanism then helps realize
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the heterogeneity-aware allocations returned by these policies in practice. We can improve various

scheduling objectives, such as average completion time, makespan, or cloud computing resource

cost, by up to 3.5×, using these heterogeneity-aware policies. Towards the end of this dissertation,

we also touch on how the dynamic pricing information of spot instances can be plugged into this

heterogeneity-aware policy framework to optimize cost objectives in the public cloud. This can help

reduce cost compared to using more expensive on-demand instances alone.
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larger cost reductions. The right two bars in Figure 6.5 shows the impact of dynamic

switching for jobs with a duration of 4 V100-days. . . . . . . . . . . . . . . . . . . . . 136
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Chapter 1

Introduction

1.1 Motivation

Deep Neural Networks (DNNs) have facilitated tremendous progress across a range of applications,

including image classification [102, 154, 84], translation [171], language modeling [118, 45], and

video captioning [167]. As DNNs have become more widely deployed, they have also become

more computationally expensive to train. For example, training the state-of-the-art GPT-3 language

model [45] requires trillions of floating point operations. These computations will only become

more expensive going forward as ML models and training datasets become larger.

The end of Moore’s Law has led to the rapid adoption of a number of parallel architectures, such

as multicore CPUs (with SIMD), GPUs, FPGAs, and domain-specific accelerators like the TPU, each

with different programming models and performance characteristics (e.g., number of cores, SIMD

lane width, cache sizes) to meet this new computational demand. Achieving high performance on

these architectures is challenging for non-expert programmers like Machine Learning engineers, who

do not want to understand the low-level performance intricacies of complicated parallel hardware.

At the same time, it is increasingly becoming important to achieve high device utilization in order to

reduce the runtime and cost of training, and keep training computationally feasible.

ML models are composed of different operators (or layers). The types of operators used are

highly task-dependent, e.g., convolutions are used for vision tasks, transformers with various multi-

head attention mechanisms are used for language tasks, and multi-layer perceptrons are used for

recommendation tasks. Each of these operator types perform differently across hardware architec-

tures. Consequently, ML models display performance heterogeneity, and executing a given model’s

computation the same way across accelerator types can lead to significant performance underuti-

lization. For example, distributing training over multiple accelerators using the same parallelization

strategy can lead to sub-optimal results (e.g., up to 90% of total time can be spent on communication

when using data parallelism [Figure 2.1]).

1
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Users with 
job queues

Shared cluster 
of accelerators

Resources for 
given job Model training

Scheduler Runtime

Figure 1.1: Typical model training workflow: a scheduler first determines how shared resources
should be allocated to various users while optimizing a specified macro-objective; a runtime then
determines how to best use these resources to train a given model. This dissertation addresses two
concrete problems in this pipeline: resource allocation to determine how a pool of resources should
be shared among multiple users, and distributed training to determine how a given job’s resource
allocation should be optimally used to train the target model as fast as possible.

Consequently, model- and hardware-aware optimization is essential, particularly as heterogene-

ity in models and hardware architectures will only increase going forward.

To amortize cost, compute resources in industry and academia are often available as part of a

shared cluster. Cluster schedulers allocate resources to various users based on their demands and

a globally optimized objective function (e.g., fairness). Once given resources, users can then use

a training framework like PyTorch or TensorFlow [134, 36] to train their model. This end-to-end

workflow is shown in Figure 1.1. As we shall show in this dissertation, inefficiencies exist in both

stages of this end-to-end workflow.

1.2 Dissertation Overview

Thesis Statement: Careful automated scheduling of computation on (heterogeneous) re-

sources across the software stack (e.g., cluster scheduler, training execution runtime) can

significantly increase model training throughput.

This dissertation introduces ideas that try to make it easier for programmers to achieve high

performance on parallel hardware for model training. In particular, the central focus of this disser-

tation is on the design of software systems that can execute deep learning computations in a more

resource-efficient and scalable way with minimal user supervision.

In demonstrating the central thesis, this dissertation examines the two related but orthogonal

problems shown in Figure 1.1: resource allocation across jobs and distributed execution within a

job. Both of these are scheduling problems but at different granularities. Concretely, we try to

answer the following questions:

1. At the micro level, given a budget of training resources (e.g., n GPUs of a specific type), how



CHAPTER 1. INTRODUCTION 3

should operators in a single deep neural network (DNN) model be partitioned among these

resources to maximize overall training throughput?

2. At the macro level, how should heterogeneous resources in a shared cluster be allocated to ML

training jobs to optimize scheduling objectives specified over one or more jobs (e.g., fairness,

cost) in both private and public cloud cluster deployments?

To address the first question, we study how to adapt pipelining, an optimization used in conven-

tional compilers and runtime systems [105, 39, 37, 47], to accelerate DNN training performance

with little to no reduction in the final accuracy of the model. Pipelining makes it possible to assign

each participating device a subset of the layers in the model, thus facilitating more communication-

efficient parallelization schemes for certain types of models. Existing work [86, 54] has looked at

using pipeline parallelism for a narrow set of models, but does not clearly outline the associated

tradeoffs of the proposed strategies, and also suffers from expensive pipeline stalls. We make the

following concrete contributions: (a) we discuss the challenges associated with using pipeline paral-

lelism for distributed training, (b) we introduce new strategies for pipeline parallelism that address

these challenges, and discuss the tradeoffs associated with each along the dimensions of throughput,

memory footprint, and weight update semantics (Table 1.1). These new strategies can outperform

existing approaches by as much as 3.2×, c) we observe that pipeline parallelism can be composed

with other existing modes of parallelism, but these various modes of parallelism interact in non-

trivial ways. We empirically and analytically analyze the interactions of pipeline parallelism with

data and tensor model parallelism. The principled combination of these parallelism methods can

train models with up to a trillion parameters using 3000+ GPUs with high efficiency (52% of the-

oretical peak device throughput, including communication across GPUs and data loading), d) we

show that an optimizer can automatically determine how to compose a subset of these parallelism

modes (given a number of workers to work with) to maximize training throughput. Our automated

partitioning algorithm recommends combinations of pipeline and data parallelism that are up to 5×
faster than data parallelism alone.

To address the second question, we introduce a general way to convert a wide range of schedul-

ing policies into heterogeneity-aware policies, improving diverse objectives in an automated way in a

system called Gavel. In Gavel, we show that existing policies can be expressed as optimization prob-

lems, and that these optimization problems can be extended easily to be heterogeneity-aware using

a concept we call effective throughput. Using this framework, we can write policies that optimize for

a host of objectives, including fairness, makespan, and dollar cost. We use a round-based schedul-

ing mechanism to ensure that jobs subsequently actually achieve their computed optimal allocation

in practice. The dollar cost policies can also be adapted to determine how to allocate ephemeral

resources (e.g., spot instances) in the public cloud, whose price and availability can change with

time, to various long-running ML training jobs. On heterogeneous clusters, Gavel is able to improve

objectives such as average job completion time by as much as 3.5×.
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1.2.1 Non-Goals

We observe that generating efficient low-level code given a higher-level description of computa-

tions (as done by systems like TVM and Halide [139, 52]) or automatically discovering semantics-

preserving transformations for model sub-graphs (as done by systems like TASO [95]) can also be

thought of as types of micro-scheduling optimizations; however, these are outside the scope of this

dissertation. Instead, we focus on a narrow type of micro-scheduling optimizations: efficient paral-

lelization given a budget of training resources.

1.3 Accelerating Distributed Model Training using Pipelining

As DNN models and training datasets become larger, many organizations are adopting distributed

DNN training to either decrease training time or train very large models that do not fit on a single

accelerator (e.g., language models like OpenAI’s GPT-3 [45]). Today, distributed training is largely

performed using intra-batch parallelism techniques (data parallelism, model parallelism, and hybrid

parallelism that combines the two), where training for a single batch of input samples is parallelized

over multiple workers. These techniques, however, all hit fundamental scaling limits, either by

introducing expensive all-to-all communication into the computation graph, or by lowering compute

resource utilization by forcing workers to wait for intermediate outputs from other workers (in inter-

layer model parallelism). We show how to use pipelining as a parallelization dimension for DNN

training: a batch is broken into smaller microbatches and workers process different microbatches

concurrently (one pipeline-parallelism schedule is shown in Figure 1.2). Pipelining enables new

distributed training strategies that can outperform previous methods, achieving low communication

overhead and high resource utilization for certain types of models.

Pipelining is a common performance optimization used in various systems, such as for instruction-

level parallelism in processors. However, pipelining in distributed model training presents one key

difference over previous computer systems that use pipelining: training is bidirectional and stateful

(Chapter 2). A forward pass through the model is followed by a backward pass for the same set of

samples which updates weight parameters, and intermediate outputs and weight parameters used

in the forward pass are needed in the backward pass. This is shown in Figure 1.3. Näıve pipelining

can lead to weight version mismatches across forward and backward passes that compromise the

accuracy of the final trained model.

PipeDream [80, 125] is a system that versions state (weight parameters and intermediate activa-

tions) to ensure clean weight update semantics. In steady state, each worker in PipeDream processes

a forward pass for one microbatch followed by a backward pass for a potentially different micro-

batch (called a 1F1B schedule). PipeDream supports multiple ways of stashing weight versions to

trade off between memory footprint, throughput, and the number of samples over which weight

gradients are averaged before updating model parameters. PipeDream’s memory-efficient modes
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Figure 1.2: With pipeline parallelism, a batch of samples is split into microbatches, and then ex-
ecution is pipelined across the microbatches. Here, the batch A is split into 4 microbatches. In
this particular pipelining schedule, the pipeline is first flushed at the end of a batch, and then the
optimizer is stepped.
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Figure 1.3: Deep Neural Network (DNN) models are composed of operators stacked one on top of
each other, called layers. Model training proceeds in iterations. In each iteration, a forward pass
through the model is followed by a backward pass where model gradients are computed; these
gradients can then be used to update the model’s parameters to prevent it from making the same
mistakes (e.g., incorrectly predicting that a picture of a “tiger” is in fact a “lion”).

like 2BW (Chapter 3) offer a way to train large models (e.g., GPT-3 [45]) with training footprints

much larger than the memory capacity of a single worker by stashing fewer weight versions on each

worker. The specific pipelining strategy used has an impact on the throughput, memory footprint,

and weight update semantics; Table 1.1 shows these tradeoffs.

PipeDream automatically determines how best to partition operators across workers by reasoning

about the computation times of each operator and the sizes of the tensors communicated across

workers. Instead of using the same parallelization strategy for all models, PipeDream ensures that
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Pipelining Scheme Throughput Overhead Memory Footprint Update Semantics

GPipe [86] High Medium Strict
PipeDream (Chapter 2) Zero High Relaxed

PipeDream-2BW (Chapter 3) Zero Low Relaxed*
PipeDream-Flush (Chapter 3) High Very Low Strict

Interleaved (Chapter 4) Medium Very Low Strict

Table 1.1: Comparison of various pipelining approaches discussed in this dissertation along three
dimensions: throughput overhead imposed from pipelining, memory footprint, and weight update
semantics. For overhead and memory footprint, lower is better. PipeDream-2BW performs gradient
accumulation: its relaxed weight updates use gradients averaged over more samples compared to
PipeDream, which might not always be feasible.

the partitioning is model- and hardware-aware.

PipeDream is able to train models to the same accuracy target up to 5× faster than data paral-

lelism. PipeDream, when optimizing for lower memory footprint (using the 2BW memory-efficient

scheme), can train large language models with 3.5 billion parameters up to 6.9× faster than model

parallelism (data parallelism cannot be deployed in settings where models are too large to fit on a

single worker). PipeDream and PipeDream-2BW train models with similar convergence trajectories

to existing widely-used approaches like data parallelism, indicating that weight stashing and 2BW

provide data parallelism-like weight update semantics.

Pipeline parallelism can also be composed with other parallelization strategies like data and

tensor model parallelism, since each of these strategies in isolation break down at large accelerator

counts: data parallelism is limited by the batch size, pipeline parallelism by the number of layers in

the model, and tensor model parallelism by the number of GPUs in a single server. The composition

of these techniques, which we call PTD-Parallelism (PTD-P for short) allows us to train GPT models

with up to a trillion parameters on 3072 GPUs with high efficiency (52% of theoretical peak). PTD-P

is described in Chapter 4.

1.4 Heterogeneous Resource Allocation for Deep Learning in

Shared Clusters and Clouds

Different types of DNN models display highly heterogeneous performance behavior across acceler-

ator types, e.g., a ResNet-50 image classification model is about 10× faster on a later-generation

Nvidia V100 GPU compared to an older-generation K80 GPU, whereas a Transformer model is only

about 3.3× faster (Figure 1.4). We expect heterogeneity to increase as newer accelerator gener-

ations and domain-specific accelerators are released. This raises a difficult question for ML users:

how should an organization allocate accelerators, which usually span multiple generations, among

its workloads in either a private cluster or in the public cloud? This is especially challenging since
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Figure 1.4: Training throughputs for various ML models. The magnitude of speedup across GPU
generations varies significantly across models.

organizations typically wish to optimize for a wide range of objectives, such as inter-user fairness or

total dollar cost. Prior resource allocation algorithms that optimize these objectives generally do not

consider device heterogeneity. One way to deal with heterogeneous resources is to manage them

separately and defer resource choice to the user; however, this can lead to sub-optimal outcomes

(e.g., all users picking the fastest resource type available, increasing the queuing delay for these

in-demand resources, while leaving other slower resources idle).

Gavel [129] is a scheduling system that determines how heterogeneous resources in on-premise

and cloud deployments should be automatically shared among training jobs from multiple users to

optimize a wide range of classical resource allocation objectives (Chapter 5). We observe that exist-

ing policy objectives can be expressed as a function of a job’s observed throughput. Consequently,

policies can be formulated as optimization problems over the allocation. We show how to extend

these optimization problems to consider heterogeneity by extending allocations to represent the frac-

tions of time each job should spend on each resource type, and using effective throughput, i.e., the

time-weighted average of throughputs jobs observe on each resource type, in the policy objectives.

Gavel’s heterogeneity-aware policies can also consider performance optimizations such as space

sharing (concurrent execution of applications to improve utilization), by changing the allocation

representation. Commonly used policies can be expressed as linear problems, which can be solved

efficiently using off-the-shelf solvers. Gavel also introduces a policy-agnostic round-based schedul-

ing mechanism that takes the allocation returned by the policy and ensures that each job receives

compute time on resources according to the computed allocation. This round-based scheduling

mechanism makes it possible to use Gavel for new policies; previous systems would need complete

system rewrites in order to support objectives that they were not originally designed for.

Gavel’s heterogeneity-aware policies reduce objectives like average job completion time by 3.5×
compared to previous schedulers that are heterogeneity-agnostic, and sustain up to 1.5× higher load

using the same cluster (Figure 1.5) by more efficiently giving resources to compatible jobs (e.g., jobs

that are very slow on a specific GPU type are not given time on that GPU type).
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Figure 1.5: Comparison of heterogeneity-agnostic least attained service (LAS) policy to a
heterogeneity-aware LAS policy (Gavel), in simulation on the continuous-single trace.

In this dissertation, we also consider the implications of using heterogeneity-aware policy for-

mulations in an elastic spot market, where prices and availability of instances can change with time

(Chapter 6). Heterogeneity-aware scheduling in this regime can lead to significant cost savings (up

to 3.5×) by moving ML workloads across instances as needed as prices and availability change.

1.5 Overview of Results

In this dissertation, we show that we can train models with low training footprints up to 5× faster

than existing methods like data parallelism, reach 52% of theoretical peak device throughput when

running training iterations for a model with a trillion parameters (which has a training memory

footprint far larger than the memory capacity of a single GPU) using 3072 GPUs, and improve aver-

age job completion time by 3.5× on a cluster with heterogeneous resources, by carefully scheduling

computation on heterogeneous resources. In particular, we have designed and built automatic par-

titioning and scheduling algorithms that take in model profiles as input (either fine-grained at the

operator level for distributed model training, or coarse-grained at the model or job level for resource

allocation) and determine how best to place and orchestrate computation on the available resources.

1.6 Previously Published Work

This dissertation features the following previously published work:

• PipeDream: Generalized Pipeline Parallelism for DNN Training [125].

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-

gory R. Ganger, Phillip B. Gibbons, Matei Zaharia. SOSP 2019.

• Memory-Efficient Pipeline-Parallel DNN Training [127].
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Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, Matei Zaharia. ICML 2021.

• Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM [131].

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,

Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catan-

zaro, Amar Phanishayee, Matei Zaharia. SuperComputing 2021.

• Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads [129].

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee, Matei Za-

haria. OSDI 2020.

• Analysis and Exploitation of Dynamic Pricing in the Public Cloud for ML Training [128].

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee, Matei Za-

haria. DISPA 2020 (workshop at VLDB 2020).

1.7 Roadmap

This dissertation is organized into two parts.

Part I describes how we can distribute tasks for training jobs in a heterogeneity-aware way with

the help of pipeline parallelism:

• Chapter 2 introduces the challenges that need to be solved in applying pipeline parallelism to

distributed model training, and outlines solutions to these challenges for models that fit on a

single worker.

• Chapter 3 describes how pipeline parallelism can be adapted to train models with training

footprints much larger than the memory capacity of a single GU.

• Chapter 4 describes the limitations of existing parallelization strategies in isolation at large

scale (thousands of GPUs), and shows how a principled combination of data, tensor, and

pipeline parallelism can be used to train models of up to a trillion parameters.

Part II describes how we can allocate heterogeneous resources (both in private clusters and in

public clouds) to different training jobs:

• Chapter 5 introduces a way to allocate heterogeneous resources to different types of training

jobs while optimizing for various objectives (e.g., fairness, makespan).

• Chapter 6 shows how this policy framework can be used to optimize for cost-based objectives,

and also studies how the availability and price of spot instances change with time, and the

implications of these on ML training workloads running on public cloud infrastructure.



Part I

Scheduling at the Microscale:

Pipeline Parallelism for Efficient

Distributed Training of Single Jobs
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Chapter 2

Pipeline Parallelism and the

PipeDream System

2.1 Introduction

DNN training proceeds in iterations of forward and backward pass computations. In each iteration,

the training loop processes a batch of input data and performs an update to the model parameters.

Current approaches to distributed training focus on parallelizing each iteration of the optimization

algorithm across a set of workers. For example, data parallelism partitions the input data across

workers [102], model parallelism partitions operators across workers [62, 55], and hybrid schemes

partition both [94, 96, 100]. Unfortunately, such parallelization schemes can suffer from high com-

munication costs at large scale. For example, Figure 2.1 shows the communication overhead for data

parallelism across five different DNN models on three different types of multi-GPU servers. Over 32

GPUs, the communication overhead for some models, computed as the percentage of total time

spent on communication stalls, is as high as 90% due to expensive cross-server all reduce com-

munication. Communication overheads are high even on servers where GPUs within the server are

connected by dedicated interconnects like NVLink [22]. Moreover, rapid increases in GPU compute

speed over time will further shift the bottleneck of training towards communication for all models.

In this chapter, we outline the challenges with applying pipelining, a common optimization used

in a variety of systems, to distributed model training. With pipeline parallelism, the model is divided

among available workers, with a group of consecutive operators (called layers in DNN terminology)

in the operator graph assigned to each worker. Computation and communication of different inputs is

then overlapped in a pipelined fashion. This process can greatly reduce inter-worker communication

because it limits the communication to layer inputs and outputs (activations in the forward pass and

gradients in the backward pass) across consecutive layers assigned to different workers, which for

11
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many models are much smaller than the size of the entire model.

Despite its potential, pipelining with DNN training poses an important challenge not present in

traditional pipelining: DNN training is bi-directional—the forward pass is followed by a backward

pass through the same layers in reverse order, using state and intermediate results from the for-

ward pass. To keep the pipeline full and thus achieve high hardware efficiency, a näıve scheduling

mechanism might inject all input batches in an epoch into the pipeline, first completing forward

passes for all input batches followed by backward passes. However, this approach suffers from low

statistical efficiency [58] and high memory footprint, increasing the number of passes through the

dataset needed to produce a high-quality model (or preventing the model from reaching the desired

target accuracy, since gradients are averaged over all training samples [43, 116]) and the amount of

stashed state needed to complete backward passes. To improve statistical efficiency, one could inject

only a subset of m inputs into the pipeline, and apply weight updates every m inputs, as recently

proposed by GPipe [86]. However, this reduces hardware efficiency due to more frequent pipeline

flushes. Inter-layer model parallelism corresponds to an extreme case of this (m is 1).

In this chapter, we introduce PipeDream, a system we built that uses pipeline parallelism to enable

faster DNN training. PipeDream, as we introduce it in this chapter, presents one possible solution

to the challenges imposed from using pipelining for distributed model training. However, other

solutions are also possible; we describe alternate solutions in Chapters 3 and 4 of this dissertation.

PipeDream achieves high hardware efficiency with no pipeline stalls in steady state, and compa-

rable statistical efficiency to data parallelism using the same number of workers. Given a pipeline

of groups of consecutive layers executed on different workers (called a stage), PipeDream uses a

scheduling algorithm called 1F1B to keep hardware well utilized while achieving semantics sim-

ilar to data parallelism. In 1F1B’s steady state, each worker strictly alternates between forward

and backward passes for its stage, ensuring high resource utilization (negligible pipeline stalls, no

pipeline flushes) even in the common case where the backward pass takes longer than the forward

pass. 1F1B also uses different versions of model weights to maintain statistical efficiency comparable

to data parallelism. Each backward pass in a stage results in weight updates; the next forward pass

uses the latest version of weights available, and “stashes” a copy of these weights to use during

the corresponding backward pass. Although the forward pass will not see updates from incom-

plete in-flight inputs, learning is still effective because model weights change relatively slowly and

bounded staleness has been found effective in improving training speeds [59, 142]. However, for

the backward pass to compute numerically correct gradients, the same weight version used during

the forward pass must be used. This scheme results in slightly relaxed weight update semantics com-

pared to GPipe (see Table 1.1). PipeDream limits the number of “in-pipeline” inputs to the minimum

needed to keep the pipeline full, reducing memory overhead.

Operating the pipeline at peak throughput also requires that all stages in the pipeline take
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(a) Instances with 8 1080Tis (private cluster).
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(b) Instances with 4 V100s (Azure).
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(c) Instances with 8 V100s and NVLink (EC2).

Figure 2.1: Communication overhead of data-parallel training using different multi-GPU server in-
stances using PyTorch 1.1, NCCL [18], and fp32 precision. We use the largest per-GPU batch size
that fits in GPU memory, and keep the per-GPU batch size constant as the number of GPUs are scaled
up (weak scaling).
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roughly the same amount of time, since the throughput of a pipeline is bottlenecked by the slow-

est stage. PipeDream automatically determines how to schedule computation using the provided

number of GPUs. In particular, its optimizer partitions the operators of the DNN based on a short

profiling run performed on a single GPU, balancing computational load among the different stages

while minimizing communication for the target platform. PipeDream effectively load balances even

in the presence of model diversity (computation and communication) and platform diversity (in-

terconnect topologies and hierarchical bandwidths). As DNNs do not always divide evenly among

available workers, PipeDream may decide to use data parallelism for some stages—multiple workers

can be assigned to a given stage, processing different inputs in parallel. Note that vanilla data paral-

lelism corresponds to the pipeline having a single stage that is replicated. PipeDream extends 1F1B

to incorporate round-robin scheduling across data-parallel stages, while making sure that gradients

in a backward pass are routed to the corresponding worker from the forward pass since the same

weight version and intermediate outputs need to be used for a correct gradient computation. The

combined scheduling algorithm, 1F1B-RR, produces a static schedule of operators that each worker

runs repeatedly, keeping utilization high across all workers. Thus, PipeDream executes a principled

combination of pipeline and data parallelism.

Our evaluation, encompassing many combinations of DNN models, datasets, and hardware con-

figurations, confirms the training time benefits of PipeDream’s pipeline parallelism. Compared to

data parallelism, PipeDream reaches a high target accuracy on multi-GPU machines up to 5.3×
faster for image classification tasks, up to 3.1× faster for machine translation tasks, 4.3× faster for

language modeling tasks, and 3× faster for video captioning models. PipeDream is also 2.6× – 15×
faster than model parallelism, up to 1.9× faster than hybrid parallelism, and 1.7× faster than other

approaches to pipelining such as GPipe.

2.2 Background and Related Work

A DNN model is composed of many operators organized into layers. When parallelizing DNN train-

ing, these layers may be partitioned over the available workers in different ways. In this section, we

cover the broad parallelization strategies already proposed in the literature. We also highlight the

challenges posed by DNN model and hardware diversity for effective parallelization.

2.2.1 Parallelization Strategies

Existing parallelization strategies split a single training iteration across available workers.

Data Parallelism. In data parallelism, inputs are sharded across workers. Each worker main-

tains a local copy of the model weights and trains on its own partition of inputs while periodically

synchronizing weights with other workers, using either collective communication primitives like
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all reduce [76] or parameter servers [108]. The amount of data communicated is proportional to

the number of model weight parameters and the number of workers participating in training.

The most commonly used form of data parallelism, referred to as bulk synchronous parallel or

BSP [163]1, requires each worker to wait for gradients from other workers. Despite optimizations

such as Wait-free Backpropagation [180], where weight gradients are sent as soon as they are avail-

able (common in modern frameworks), communication stalls are inevitable for large models where

the time needed to synchronize gradients across workers can dominate computation time.

Figure 2.1 quantitatively shows the fraction of training time spent in communication stalls with

data parallelism for different classes of DNNs using three types of servers: 8-1080Ti GPU instances

linked over PCIe within servers and 25Gbps interconnects across servers, 4-V100 GPU instances

without NVLink and 10Gbps interconnects across servers, and 8-V100 GPU instances with NVLink

interconnects within servers and 25Gbps interconnects across servers.

We focus on four key takeaways. First, the communication overhead for many of these mod-

els is high despite using multi-GPU servers and state-of-the-art communication libraries like NCCL.

Data parallelism scales well for models like ResNet-50, which have a large number of convolutional

layers with compact weight representations, but scales less well for other models with LSTM or fully-

connected layers, which have more dense weight representations. Second, applications distributed

across multi-GPU servers are bottlenecked by slower inter-server links, as evidenced by communi-

cation overheads spiking and then plateauing when training scales out to multiple servers. Data

parallelism for such hierarchical networks can be a poor fit, since the same number of bytes are

sent over both high- and low- bandwidth channels. Third, as the number of data-parallel work-

ers increases, communication overheads increase for all models, even if training is performed on a

multi-GPU instance with NVLink. Coleman et al. [57] showed similar results. Fourth, as GPU com-

pute speeds increase (1080Tis to V100s), communication overheads also increase for all models.

Other Data Parallelism Optimizations. Asynchronous parallel training (ASP) allows each worker

to proceed with the next input batch before receiving the gradients from the previous batch. This ap-

proach improves hardware efficiency (time spent in each iteration) over BSP by overlapping compu-

tation with communication, but also introduces staleness and reduces statistical efficiency (number

of iterations needed to reach a particular target accuracy) [60, 50].

Seide et al. [147, 146] looked at quantizing gradients to decrease the amount of data needed

to be communicated over the network. This approximation strategy is effective in limited scenarios

but lacks generality; it does not hurt convergence for some speech models [148], but has not been

shown to be effective for other types of models. Others have explored techniques from the HPC

literature to reduce the overhead of communication [76, 160, 41, 162], often using highly special-

ized networking hardware. Our work is complementary to these techniques and focuses mainly on

1In this dissertation, we use DP to refer to data-parallelism with BSP.
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Figure 2.2: Model parallel training with 4 workers. Numbers indicate input ID, and backward passes
takes twice as long as forward passes. For simplicity, we assume that communicating activations/-
gradients across workers has no overhead.

improving the performance of parallel DNN training when using commodity accelerators and inter-

connects available in public clouds; our work looks at fundamentally different ways of partitioning

the model training graph over training resources to reduce the number of bytes of data that need to

be communicated between workers.

Recent work has demonstrated that using large batches is effective for training ResNet-50, espe-

cially when combined with Layer-wise Adaptive Rate Scaling (LARS) [76, 92, 177]. Large batches

reduce the communication overhead by exchanging parameters less frequently; however, our exper-

iments show that such techniques lack generality beyond ResNet-50 and pipeline parallelism can

outperform the fastest LARS data-parallel option.

Model Parallelism. Model parallelism is used traditionally to train large models that do not fit on

a single worker. With model parallelism [62, 55], the weight parameters in a model are split over

available workers, with intermediate activations and gradients communicated across workers. Dif-

ferent forms of model parallelism are possible based on how operators are partitioned over workers.

Inter-layer model parallelism (where each worker is assigned a subset of the layers or operators in

the model) underutilizes resources since at most a single worker is active at any point in time (Fig-

ure 2.2). Tensor (intra-layer) model parallelism [153] involves splitting each layer over multiple

workers, and leads to multiple all-to-all communication calls in the critical path (which are expen-

sive collectively), limiting the number of model partitions to the number of GPUs in a single server.

Chapter 4 discusses this in more detail.

Model parallelism requires programmers to determine how to partition their models across mul-

tiple GPUs [100], resulting in point solutions. Recent work explores the use of Reinforcement Learn-

ing to automatically perform device placement [121]. However, these techniques are time- and

resource- intensive, and do not leverage the fact that DNN training can be thought of as a computa-

tional pipeline consisting of groups of consecutive layers – these assumptions make the optimization

problem more tractable, allowing for exact solutions in polynomial time as we show in §2.4.1.

FlexFlow [96] shows how to split a model graph using model and data parallelism, but does not

consider pipelining, and can still suffer from poor resource utilization when sharding operators over
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Figure 2.3: GPipe’s pipeline parallelism approach. Frequent pipeline flushes lead to idle time where
workers do not have inputs to process.

multiple workers or GPUs.

Hybrid Parallelism. Recent work has proposed splitting a single iteration of the optimization al-

gorithm among multiple dimensions. One Weird Trick (OWT) [100] split the then-popular AlexNet

model by hand, using data parallelism for convolutional layers that have a small number of weight

parameters and large outputs, while choosing to not replicate fully connected layers that have a

large number of weight parameters and small outputs. OWT does not use pipelining. FlexFlow [94]

proposed splitting a single iteration along samples, operators, attributes, and parameters, and de-

scribes an algorithm to determine how to perform this splitting in an automated way. However,

FlexFlow does not consider pipelining in its search space.

Pipeline Parallelism. Chen et al. [54] explored the potential benefits of pipelining batches in

model-parallel training, but did not address the conditions necessary for good statistical efficiency

and performance across a wide variety of real-world models. Huo et al. [88] explored parallelizing

the backward pass. Our proposed solution parallelizes both forward and backward passes.

GPipe [86] uses pipelining in the context of model-parallel training for very large models. GPipe

does not specify an algorithm for partitioning a model, but assumes a partitioned model as input.

GPipe further splits a batch intommicrobatches, and performs forward passes followed by backward

passes for these m microbatches (see Figure 2.3, where m is 4). With a focus on training a large

model like AmoebaNet, GPipe optimizes for memory efficiency; it uses existing techniques such as

weight gradient aggregation and trades computation for memory by discarding activation stashes

between the forward and the backward pass, instead opting to re-compute them when needed in

the backward pass [53]. As a result, it can suffer from reduced hardware efficiency due to re-

computation overheads and frequent pipeline flushes if m is small (§2.5.4).
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Figure 2.4: PipeDream pipeline schedule with 4 workers, with startup and steady states indicated.
In this example, the backward pass takes twice as long as the forward pass.

2.2.2 DNN Model and Hardware Diversity

DNN models are diverse, with convolutional layers, LSTMs [171], attention layers [164], and fully-

connected layers commonly used. These different types of models exhibit vastly different perfor-

mance characteristics with different parallelization strategies, making the optimal parallelization

strategy highly model-dependent.

Picking an optimal parallelization scheme is challenging because the efficacy of such a scheme

depends on the characteristics of the target deployment hardware as well; GPUs, ASICs, and FPGAs

have very different compute capabilities. Moreover, interconnects linking these accelerators have

different topologies and capacities; cloud servers are linked by 10Gbps to 100Gbps networks, accel-

erators within servers might be connected over shared PCIe trees (10 to 15GBps), and specialized

expensive servers, such as the DGX-1 [20], use NVLink with point-to-point 30GBps bandwidth ca-

pabilities. This diversity in models and deployments makes it extremely hard to manually come up

with an optimal parallelization strategy. PipeDream automates this process, as we discuss in §2.4.1.

2.3 Pipeline Parallelism as a Distributed Training Paradigm

Pipeline parallelism is a parallelization strategy that combines pipelining with inter-layer model par-

allelism. Pipeline-parallel computation involves partitioning the layers of a DNN model into multiple

stages, where each stage consists of a consecutive set of layers in the model. Other assignments of lay-

ers to compute resources are possible; we defer discussion of such interleaved assignments (where

each worker gets a strided set of operators in the model) to Chapter 4. Each stage is mapped to a

separate GPU that performs the forward pass (and backward pass) for all layers in that stage.2

In the simplest case, only one input is active in the system, as in traditional model-parallel

training (Figure 2.2); in this setup, at most one GPU is active at a time. Ideally, we would like

all GPUs to be active. With this in mind, we inject multiple inputs into the pipeline one after the

2We use GPUs as a concrete instance of accelerators and use the terms “GPU”, “device”, and “worker” interchangeably.
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other. On completing its forward pass for an input, each stage asynchronously sends the output

activations to the next stage, while simultaneously starting to process another input. The last stage

starts the backward pass on an input immediately after the forward pass completes. On completing

its backward pass, each stage asynchronously sends the gradient to the previous stage while starting

computation for the next input (Figure 2.4).

Pipeline parallelism (PP) can outperform data parallelism (DP) for two reasons.

Pipelining communicates less. PP often can communicate far less than DP. Instead of having

to aggregate gradients for all parameters and send the result to all workers, as is done in data-

parallel approaches (using either collective communication or a parameter server), each worker in

a PP execution has to communicate only subsets of the gradients and output activations, to only

a single other worker. For certain models, these intermediate activations and input gradients are

much smaller than the full weight gradients. This can result in large reductions in communication

for some models (e.g., >85% reduction for VGG-16, AWD LM).

Pipelining overlaps computation and communication. Asynchronous communication of for-

ward activations and backward gradients across stages results in significant overlap of communi-

cation with the computation of a subsequent input. This computation and communication are com-

pletely independent with no dependency edges, since they operate on different inputs, leading to

easier parallelization.

However, to realize the opportunity of pipeline parallelism, we must overcome three challenges.

2.3.1 Challenge 1: Work Partitioning

With pipeline parallelism, model training can be treated as a computation pipeline, with each worker

executing a subset of the model as a stage. Like with any pipeline, the steady state throughput of the

resulting pipeline is the throughput of the slowest stage. Having each stage process inputs at vastly

different throughputs can lead to bubbles in the pipeline, starving faster stages of inputs to work

on and resulting in resource under-utilization. Excessive communication between workers can also

lower the throughput of the training pipeline. Moreover, the allocation of stages to workers needs to

be model- and hardware-aware to be effective, and there may be cases where no simple partitioning

across the GPUs achieves both limited communication and perfect load balance.

2.3.2 Challenge 2: Work Scheduling

Unlike traditional uni-directional pipelines, training a DNN model with pipelining involves a bi-

directional pipeline, where an input proceeds through the computation pipeline first forward and
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then backward (this is fundamental to the most natural and widely used form of backpropagation:

the backward pass is needed to compute weight gradients that are then used to update the model’s

parameters). This is shown in Figure 1.3. Each active input in the pipeline may be in a different

stage, either in the forward pass or backward pass. As a result, at any point in time, each worker in

the system needs to make decisions on the following:

1. Should it perform a forward pass for an input, pushing the subsequent output activation to

downstream workers?

2. Should it perform a backward pass for a (different) input, pushing the subsequent input gra-

dient (gradient of the loss with respect to the input tensor to the stage) to upstream workers?

3. How should inputs be routed through replicated stages?

These decisions need to be made in such a way that we can still ensure that the final model

obtained is high quality, convergence rate (or statistical efficiency, the number of iterations needed

to train the model up to a particular accuracy target) is not hampered, and memory footprint is low.

2.3.3 Challenge 3: Effective Learning

In a näıvely pipelined system, each stage’s forward pass for an input is performed using one version

of parameters and its backward pass is performed using a different version of parameters. Figure 2.4

illustrates this using a partitioning with four workers and no stage replication. In stage 1, the forward

pass for input 5 is performed after the updates from input 1 are applied, whereas the backward pass

for input 5 is performed after updates from inputs 2, 3, and 4 are applied. As a result, in the

backward pass for input 5 on stage 1, the gradient is computed using a different set of weights

than the ones used in the corresponding forward pass; this discrepancy in weight versions results in

invalid gradients and can prevent or slow down model convergence.

2.4 PipeDream System Design

In this section, we discuss PipeDream’s specific solutions to the challenges presented in the previous

section. However, as mentioned before, other strategies exist for pipeline parallelism, leading to

other tradeoffs. We discuss a few other strategies in Chapters 3 and 4. In discussing PipeDream’s

specific solutions, we will refer to Figure 2.5, which shows PipeDream’s high-level workflow.

PipeDream assumes that each input is composed of a fixed pre-configured number of samples

(the microbatch size). PipeDream, as described in this chapter, does not perform additional gradi-

ent accumulation within the pipeline, which means the batch size and microbatch size within the

pipeline are the same. Chapter 3 shows an alternative approach where this is no longer true.
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Figure 2.5: PipeDream’s automated mechanism to partition DNN layers into stages. PipeDream first
profiles the input DNN, to get estimates for each layer’s compute time and output size. Using these
estimates, PipeDream’s optimizer partitions layers across available machines, which is then executed
by PipeDream’s runtime.

2.4.1 Profiling and Partitioning

PipeDream’s optimizer outputs a balanced pipeline. Its algorithm partitions DNN layers into stages

such that each stage completes at roughly the same rate, while trying to minimize communication

across workers in a topology-aware way (for example, large outputs should be sent over higher

bandwidth links if possible). To further improve load balancing, PipeDream goes beyond straight

pipelines, allowing a stage to be replicated (i.e., data parallelism is used on the stage). This parti-

tioning problem is equivalent to minimizing the time taken by the slowest stage of the pipeline, and

has the optimal sub-problem property: a pipeline that maximizes throughput given a worker count is

composed of sub-pipelines that maximize throughput for smaller worker counts. Consequently, we

use dynamic programming to find the optimal solution.

PipeDream exploits the fact that DNN training shows little variance in computation time across

inputs. PipeDream records the computation time taken by the forward and backward pass, the size

of the layer outputs, and the size of the associated parameters for each layer as part of an initial

profiling step; this profile is used as the input to the optimizer’s partitioning algorithm (Figure 2.5).

The partitioning algorithm also takes into account other constraints such as hardware topology and

bandwidth, number of workers, and memory capacity of the compute devices.
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Figure 2.6: An example 2-level hardware topology. Solid green boxes represent GPUs. Each server
(dashed yellow boxes) has 4 GPUs connected internally by links of bandwidth B1; each server is
connected by links of bandwidth B2. In real systems, B1 > B2. Figure best seen in color.

Profiler

PipeDream records three quantities for each layer l, using a short (few minutes) profiling run of

1000 iterations or so on a single GPU of the target type:

1. Tl, the total computation time across forward and backward passes for layer l on the GPU for

a single input (we assume that the microbatch size is the same across the full computation).

2. al, the size of the output activations of layer l in bytes.

3. wl, the size of weight parameters for layer l in bytes.

PipeDream estimates the communication time by dividing the amount of data that needs to be

transferred by the network bandwidth of the communication link. In data-parallel configurations

with m workers, each worker sends
(
m−1
m · |wl|

)
bytes to other workers, and receives the same

amount; this is used to estimate the time for weight synchronization for layer l when using data

parallelism with m workers.

Partitioning Algorithm

Our partitioning algorithm takes the output of the profiling step, and computes:

1. A partitioning of layers into stages.

2. The replication factor (number of workers) for each stage.

3. The optimal number of in-flight inputs to keep the training pipeline busy.

PipeDream’s optimizer assumes that the machine topology is hierarchical and can be organized

into levels, as shown in Figure 2.6. Bandwidths within a level are the same, while bandwidths

across levels are different. We assume that level k is comprised of mk components of level (k − 1),

connected by links of bandwidth Bk. In Figure 2.6, m2 is 2 and m1 is 4. In addition, we define m0

to be 1; m0 is the number of compute devices within the first level (solid green boxes in Figure 2.6).

PipeDream’s optimizer solves dynamic programming problems progressively from the lowest to

the highest level. Intuitively, this process finds the optimal partitioning within a server and then uses

these partitions to split a model optimally across servers.
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Notation. Let Ak(i → j,m) denote the time taken by the slowest stage in the optimal pipeline

between layers i and j using m workers at level k. The goal of our algorithm is to find AL(0 →
N,mL), and the corresponding partitioning, where L is the highest level and N is the total number

of layers in the model.

Let T k(i → j,m) denote the total time taken by a single stage spanning layers i through j for

both forward and backward passes, replicated over m workers using bandwidth Bk.

Formulation. For all k from 1 to L,

T k(i→ j,m) =
1

m
max


Ak−1(i→ j,mk−1),

2(m− 1)
∑j

l=i |wl|
Bk

.

where the first term inside the max is the total computation time for all the layers in the stage using

level k − 1 as the computation substrate, and the second term is the time for data-parallel commu-

nication among all layers in the stage. The result of the max expression above gives the effective

time spent processing m inputs while performing compute and communication concurrently; thus,

the effective time spent processing a single input is this term divided by m.

The optimal pipeline can now be broken into an optimal sub-pipeline consisting of layers from

1 through s with m −m′ workers followed by a single stage with layers s + 1 through j replicated

over m′ workers. Then, using the optimal sub-problem property, we have:

Ak(i→ j,m) = min
i≤s<j

min
1≤m′<m

max


Ak(i→ s,m−m′),

2as/Bk,

T k(s+ 1→ j,m′).

where the first term inside the max is the time taken by the slowest stage of the optimal sub-pipeline

between layers i and s with m−m′ workers, the second term is the time taken to communicate the

activations and gradients of size as between layers s and s+ 1, and the third term is the time taken

by the single stage containing layers s+ 1 to j in a data-parallel configuration of m′ workers.

When solving for level k, we use Ak−1(i → j,mk−1), which is the optimal total computation

time for layers i through j using all workers available in a single component at level (k − 1) (in the

expression T k(i → j,m)). In Figure 2.6, this would represent determining how best to partition

intermediate layers of the model using all workers in a yellow server.

Initialization. Level 0 uses the profiled computation times: A0(i → j,m0) =
∑j

l=i Tl. For k > 0,

optimal compute times with all compute devices in the previous level are used: Ak(i → j, 1) =

Ak−1(i→ j,mk−1).
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Figure 2.7: An example PipeDream pipeline with 3 workers and 2 stages. We assume that forward
and backward passes in the first stage take two and four time units, while forward and backward
passes in the second stage take one and two time units. The first stage in this pipeline is replicated
twice so that each stage sustains roughly the same throughput. Here, we assume that the backward
pass takes twice as long as the forward passes, but this is not a requirement of our approach.

Runtime Analysis. For a given level k, the total number of sub-problems is O(N2mk). Time com-

plexity per sub-problem is O(Nmk), leading to a total time complexity of O(N3m2
k) for level k. Total

time complexity is
∑L

k=1O(N3m2
k). In our experiments, the running time is under 8 seconds.

2.4.2 1F1B(-RR) Schedule

In the startup phase, the input stage admits enough inputs to keep the pipeline full in steady state.

Based on the partitioning generated by our algorithm, the optimal number of inputs admitted per

input stage replica to keep the pipeline full in steady state is given by:

NUM OPT ACTIVE MINIBATCHES (NOAM) =

d (# workers) / (# of replicas in the input stage) e.
Once in steady state, each stage alternates between performing its forward pass for an input and

its backward pass for an earlier input. We call this the one-forward-one-backward (1F1B) schedule.

1F1B ensures that every GPU is occupied with an input in a balanced pipeline, with each stage

producing outputs in aggregate at roughly the same rate. It also ensures backward passes from

inputs are applied at regular intervals of time. As we show later in this dissertation, this schedule

helps keep the memory footprint low by keeping the number of in-flight inputs as small as possible

while still ensuring that every worker in the pipeline is active (thus minimizing pipeline stalls).

Figure 2.4 shows the corresponding compute timeline for a pipeline with 4 stages. The NOAM

for this configuration is 4. In the startup phase, the input stage admits exactly four inputs that

propagate their way to the output stage. As soon as the output stage completes its forward pass for

the first input, it performs its backward pass for the same input, and then starts alternating between

forward and backward passes for subsequent inputs. As the first input propagates up the pipeline to

earlier stages (to complete its backward pass), every stage starts alternating between forward and

backward passes for different inputs. As shown in the figure, every worker is performing either a

forward or backward pass for some input in steady state.

When a stage is run in a data-parallel configuration (replicated across multiple GPUs), we use
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Figure 2.8: Weight stashing as input 5 flows across stages. Arrows point to weight versions used
for forward and backward passes for input 5 at the first stage. For simplicity, we assume that the
forward pass takes one time unit, and the backward pass takes two time units on each worker.

deterministic round-robin load balancing based on an input identifier to spread work across the

replicas. Such deterministic load-balancing ensures that each input is routed to the same worker

for both the forward and backward passes of the stage, which is important since parameters and

intermediate outputs from the forward pass are needed for the backward pass. This mechanism,

which we call one-forward-one-backward-round-robin (1F1B-RR), is a static policy that is executed

without expensive distributed coordination. Figure 2.7 shows this mechanism in action for a simple

2-1 configuration, with the first stage replicated twice, and the second stage un-replicated. In the

first stage, all inputs with even input IDs are processed by worker 1, while inputs with odd input IDs

are processed by worker 2. Worker 3 in the second stage processes all inputs. All workers perform a

forward pass followed by a backward pass on a different input.

For 1F1B-RR to be effective, it is not necessary for the forward pass to take as long as the backward

pass. In fact, we observe that the backward pass is always larger than the forward pass in practice.

1F1B-RR remains an effective scheduling mechanism, as highlighted in Figure 2.4.3

2.4.3 Weight Stashing and Vertical Sync

In this chapter, we present two techniques (weight stashing and vertical sync) that ensure that

numerically-correct gradients are computed. However, these are not the only solutions, and we

discuss other solutions in Chapters 3 and 4, along with the corresponding tradeoffs.

Weight Stashing. PipeDream uses a technique called weight stashing to avoid a fundamental mis-

match between the version of weights used in the forward and backward pass. Weight stashing

maintains multiple versions of the weights, one for each active input. Each stage processes an input
31F1B-RR produces a full steady state pipeline even for cases where the ratio of backward- to forward-pass time is not an

integer (e.g., 3 to 2).
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using the latest version of weights available in the forward pass. After completing the forward pass,

PipeDream stores the weights used for that input. The same weight version is then used to compute

the weight update and upstream weight gradient in the input’s backward pass.

Weight stashing ensures that within a stage, the same version of model parameters are used for

the forward and backward pass of a given input. For example, in Figure 2.8, input 5 uses parameter

updates from input 1 on machine 1 and from 2 on machine 2. Weight stashing does not guarantee

the consistency of parameter versions used for a given input across stages.

Vertical Sync. Vertical sync is an optional technique in PipeDream that eliminates the potential

inconsistency across stages. For example, in Figure 2.4, input 5 uses parameters updated by input

1 on all workers for both its forward and backward passes when using vertical sync. Each input t

that enters the pipeline is associated with the latest weight version W (t−x) seen at the input stage.

This information is propagated along with the activations and gradients as the input t flows through

the pipeline in the forward direction. Across all stages, the forward pass for t uses the stashed

weights W (t−x) as opposed to the latest weight update. After performing the backward pass for

t (using stashed weights W (t−x)), each stage independently applies weight updates to create the

latest weights (W (t)), and can then delete W (t−x). This coordination across stages is asynchronous.

The semantics of vertical sync are different from GPipe (and data parallelism). In particular,

gradients are not aggregated over all in-flight inputs (called microbatches in GPipe) in the system

– vertical sync merely ensures that the same weight versions are used to compute gradients across

different workers (but the weight versions to which gradients are applied are different from those

used to compute the gradients). The batch size with weight stashing and vertical sync is thus just

the microbatch size (the number of samples in an input); the batch size with GPipe is b ·m, where

m is the number of inputs injected into the pipeline.

Staleness. We can now formalize the degree of staleness of weight updates for each of these

techniques. For this discussion, we assume a straight pipeline (i.e., no stage replication) with the

model split into n stages; the weights in each stage are represented as W1, W2, and so on. In

addition, we denote W (t)
l as the weights Wl after t inputs. We assume that the number of pipeline

stages is p.

Now, after every input batch, we compute ∇f(W1,W2, . . . ,Wp), which is the gradient averaged

over all samples in the batch. Vanilla batch SGD (f is the loss function, ν is the learning rate) has

the following gradient update:

W (t+1) =W (t) − ν · ∇f(W (t)
1 ,W

(t)
2 , . . . ,W (t)

p )

With weight stashing, gradients in stage 1 are computed with weights that are p−1 steps delayed,

gradients for stage 2 are computed with weights that are p − 2 steps delayed, etc. Mathematically,
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this means the weight update looks like:

W (t+1) =W (t) − ν · ∇f(W (t−p+1)
1 ,W

(t−p+2)
2 , . . . ,W (t)

p )

Without weight stashing, the weight update is not a valid gradient of the loss function f for any

vector W1, . . . ,Wp.

Adding vertical sync alters the weight update to:

W (t+1) =W (t) − ν · ∇f(W (t−p+1)
1 ,W

(t−p+1)
2 , . . . ,W (t−p+1)

p )

This is semantically similar to data parallelism with BSP synchronization on p workers with the

same per-worker batch size and staleness (but gradients averaged over a p times smaller batch).

Memory Overhead. Pipelining does not significantly increase per-worker memory usage relative

to data parallelism, even with weight stashing. Consider a straight pipeline (no data-parallel stages),

where a model is divided across p workers, with each worker holding 1/p of the weights. With non-

pipelined model-parallel training, each worker would need 1/p of the memory compared to data

parallel training. Admitting p inputs into the pipeline, as PipeDream does, increases this by at most

a factor of p, because a version of <weights, activations> is needed for each in-flight input. Thus,

PipeDream’s peak per-worker memory usage is on par with data parallelism.

PipeDream’s memory footprint can be further reduced by using existing techniques: efficient

encoding or compression of intermediate data [89], gradient aggregation where weight gradients

are accumulated into a single buffer at a stage for m inputs before performing a weight update,

and trading computation time for activation-stash memory by discarding them in the forward pass

and recomputing them as needed during the backward pass [53]. We discuss the usage of such

techniques to train models with large training footprints in the next chapter.

PipeDream’s default semantics exclude vertical sync as it requires more metadata to be stored at

every stage in the pipeline. Our evaluation demonstrates the effectiveness of weight stashing across

models, datasets, and hardware configurations.

2.4.4 Implementation

The interface to PipeDream is implemented as a standalone Python library of ∼3000 LOC that man-

ages device memory, schedules work, and handles communication. PipeDream uses PyTorch [134]

for auto-differentiation and to execute operators; however, PipeDream is extensible and can work

with other ML frameworks such as Tensorflow [36], MXNet [51], and CNTK [146]. As a proof of

concept, we also integrated PipeDream with Caffe [93].
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PipeDream first profiles the model on a single GPU with a subset of inputs from the training

dataset (Figure 2.5). It then runs the optimization algorithm described in §2.3.1 to partition the

DNN model into stages, with some stages possibly replicated.

PipeDream’s optimizer returns an annotated operator graph, with each model layer mapped to

a stage ID. PipeDream performs a BFS traversal of this graph and generates code for each stage

as a separate torch.nn.Module, ordering operators in each stage to make sure their input-output

dependencies from the original PyTorch model graph are respected. The PipeDream runtime then

assigns each stage (including replicas for replicated stages) to a single worker.

Parameter State. PipeDream maintains all parameters associated with the layers assigned to the

stage directly in GPU memory. PipeDream applies updates to the most recent parameter version

when the weight update becomes available if the stage is not replicated. The weight updates are

synchronized across replicas prior to being applied if the stage is replicated. When a newer version

of the parameters becomes available, the prior version is not immediately discarded. Parameters are

discarded only once a backward pass that uses fresher parameters is performed.

Intermediate State. Each stage’s input and output data is assigned a unique blob ID. Upon receiv-

ing intermediate data from the prior stage (or from disk in the case of the input stage), PipeDream

copies the intermediate data to GPU memory and places a pointer to the associated buffer in a work

queue. Intermediate data from the forward pass is not discarded until the associated batch com-

pletes that stage’s backward pass. Intermediate data from the backward pass is freed as soon as the

worker finishes using it, and if necessary, after it is sent to the next stage.

Stage Replication. PipeDream uses PyTorch’s DistributedDataParallel library [24] to synchro-

nize parameters for layers of data-parallel stages. Using wait-free back propagation, weight gradi-

ents are communicated to servers as soon as they are computed, rather than waiting for computation

to finish for all layers. Since we support replication of individual stages, data-parallel training is ef-

fectively a special case in our framework – we represent this as a single stage that contains all the

layers of the DNN model, and replicate the stage across all available GPUs. We use the NCCL commu-

nication backend [18] for data-parallel baselines as we find it to be faster than Gloo [8] for the large

tensors exchanged in DP. PipeDream uses Gloo for all inter-GPU communication when performing

pipeline-parallel training.

Checkpointing. PipeDream supports periodic checkpointing of model parameters for fault toler-

ance, with default checkpoints made across stages at the end of every epoch. Checkpoints don’t

require expensive global coordination. Each stage dumps its model parameters locally when it per-

forms the backward pass for the last batch in an epoch. Restarting a run due to failures entails

starting from the last successfully created checkpoint for all stages.
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Cluster Server SKU GPUs per Interconnects
name server Intra-, Inter-server

Cluster-A Azure NC24 v3 4x V100 PCIe, 10 Gbps
Cluster-B AWS p3.16xlarge 8x V100 NVLink, 25 Gbps
Cluster-C Private Cluster 1 Titan X N/A, 40 Gbps

Table 2.1: Characteristics of servers used in experiments.

2.5 Evaluation

This section evaluates the effectiveness of PipeDream for seven different DNNs on three different

clusters. The results of our experiments support a number of important findings:

1. PipeDream achieves significant speedups in time-to-target-accuracy across a wide range of

different learning tasks on different hardware deployments.

2. PipeDream is more efficient than other recently proposed pipeline parallelism approaches.

3. PipeDream greatly reduces overheads of communication and does not significantly increase

memory footprint compared to data-parallel training.

4. Combining pipelining, model parallelism, and data parallelism outperforms model-, data-, or

hybrid-parallelism in isolation.

2.5.1 Experimental Setup

Tasks and Datasets. We use four tasks and four datasets in our experiments:

1. Image Classification, using the ImageNet-1K (ILSVRC12) [144] dataset.

2. Translation, using the WMT16 English to German dataset for training, and the newstest2014

dataset for validation.

3. Language Modeling, using the Penn Treebank (PTB) [120] dataset.

4. Video Captioning (S2VT), using the Microsoft Video description corpus (MSVD) [49].

Clusters. We use three different clusters in our experiments, summarized in Table 2.1. Cluster-A

has servers with 4 NVIDIA V100 GPUs each (Microsoft Azure NCv3 instances), with 16 GB of GPU

device memory, and a 10 Gbps Ethernet interface. Cluster-B has servers with 8 V100s each (AWS

EC2 p3.16xlarge instances), with 16 GB of GPU device memory, and a 25 Gbps Ethernet interface.

GPUs within servers are connected via a shared PCIe interconnect on Cluster-A, and via point-to-

point NVLink on Cluster-B. All servers run 64-bit Ubuntu 16.04 with CUDA toolkit 10.0 and cuDNN
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v7.4. Cluster-C has servers with 1 NVIDIA Titan X GPU and 12 GB of GPU device memory, connected

via 40 Gbps Ethernet. Unless otherwise stated, all our experiments are run on multi-GPU servers

(Cluster-A and Cluster-B).

Models. We use seven different DNN models in our experiments across the four applications:

1) VGG-16 [154], 2) ResNet-50 [84], 3) AlexNet [102], 4) Google Neural server Translation (GNMT)

with 8 LSTM layers [171], 5) GNMT with 16 LSTM layers, 6) AWD Language Model (LM) [118],

and 7) the S2VT [167] sequence-to-sequence model for video transcription.

Batch Sizes and Training Methodology. We use the largest per-GPU batch that fits in one GPU’s

memory – anything larger yields out-of-memory exceptions. This ensures that we hit peak achievable

throughput on a single device. Unless otherwise stated, we report per-GPU batch sizes (G); for data-

parallel runs with n workers, the global batch size is n · G. The global batch sizes we use are

consistent with those used by the ML community and reported in the literature for these models. We

use a per-GPU batch size of 64 per GPU for VGG-16, 256 for AlexNet, 128 for ResNet-50 (e.g., BS

= 1024 for 8 GPUs), 64 for GNMT, 80 for S2VT, and batch size of 80 for LM. We train the VGG-16,

ResNet-50, Language Modeling, and S2VT models using SGD with an initial learning rate of 0.01,

0.1, 30.0, and 0.01 respectively. For GNMT, we use the Adam optimizer [98] with an initial learning

rate of 0.0003. We use full (fp32) precision.

For all experiments (other than AlexNet), we measure the time taken to train to a target vali-

dation accuracy: top-1 accuracy of 68% for VGG-16 [26], top-1 accuracy of 75.9% for ResNet-50,

BLEU score of 21.8 for GNMT, a validation perplexity of 98 for LM, and a METEOR [65] score of

0.294 for S2VT. Guided by prior work, we adjust the learning rate during training to converge to the

desired result faster [156, 98] and utilize learning rate warm-up for large global batch sizes [76].

We use the same learning rate schedules for PipeDream and data-parallel training. For AlexNet, we

use synthetic data (otherwise, data loading is the bottleneck) and measure throughput.
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2.5.2 Comparison to Data Parallelism

Table 2.2 summarizes results comparing PipeDream with data-parallel training (DP). The table

shows PipeDream’s auto-generated configurations and their speedups in training time-to-accuracy

over corresponding data-parallel training configurations.4
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Figure 2.9: Accuracy vs. time for VGG-16 using 16 GPUs. Each circle or triangle represents two
epochs of training.

PipeDream Configurations. As described in §2.3.1, given a DNN model and a set of servers with

GPUs, PipeDream’s optimizer automatically chooses to partition the model into stages, while also

deciding the optimal replication factor for each stage. Although most prior research has focused

on improving data-parallel training, our results indicate that the best configurations for many mod-

els is not data parallelism, despite the use of many important optimizations such as wait-free back

propagation. In all but one of our experiments, the best PipeDream configuration combines model

parallelism, pipelining, and sometimes data parallelism; each of these configurations outperforms

purely data-parallel training, highlighting the importance of combining pipeline parallelism with

data parallelism. PipeDream’s optimizer recommends data parallelism for ResNet-50 because its

weight representations are small and its outputs are large. PipeDream’s optimizer, besides deter-

mining the optimal configuration, also automatically decides where to partition the DNN training
4A configuration indicates how layers are partitioned into stages amongst workers.
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Figure 2.10: Accuracy vs. epoch using 16 GPUs on Cluster-B.

graph; these partitioning decisions are not shown in Table 2.2.

Image Classification. We compare the time-to-accuracies for PipeDream and data parallelism (DP)

on the VGG-16 model using 4 servers in Cluster-A (4x4 (A) in Table 2.2). PipeDream reaches target

accuracy 5.3× faster than DP on a single server due to a reduction in inter-server communication.

Figure 2.9 (a) shows this comparison as the DNN is trained over time. In the 4-server configuration,

PipeDream’s optimizer (§2.3.1) recommends a 15-1 configuration – in this case, VGG-16’s convolu-

tional layers are replicated, while the large fully connected layers are not, reducing communication

overhead. Moreover, pipelining across the two stages helps keep all workers busy.

Compared to Cluster-A, which has 4 GPUs per server connected via PCIe, Cluster-B has 8 GPUs

per server connected over faster NVLink interconnects. On 2 servers on Cluster-B (16 GPUs total),

PipeDream reaches target accuracy 3× faster than DP when training VGG-16. Due to the faster

interconnects on Cluster-B, both PipeDream and DP reach target accuracy faster than on Cluster-A

(see Figure 2.9).

For training ResNet-50 on Cluster-A, PipeDream’s partitioning algorithm recommends data par-

allelism as the optimal configuration (no pipelining or model parallelism). Later, in §2.5.5, we

show the reason for this recommendation: configurations that do not use data parallelism incur
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Model Scale (# V100s) Cluster-B /
official MLPerf v0.5

GNMT-8 256 1.9×
SSD 64 3.3×

Mask R-CNN 64 2.3×

Table 2.3: Increase in per-epoch times for data-parallel training when moving from dedicated clus-
ters used in official MLPerf v0.5 entries to public clouds like Cluster-B. The same code is used for
both sets of runs.

higher communication overheads than data parallelism for ResNet-50, since ResNet-50 is com-

posed of convolutional layers which have compact weight representations but large output activa-

tions. For AlexNet, we compare throughput of PipeDream on Cluster-A and Cluster-B. On Cluster-A,

PipeDream achieves a time-per-epoch speedup of 4.9× with 4 servers. On Cluster-B, PipeDream

achieves a speedup of 2× when using 16 GPUs.

Translation. We show results for the GNMT model with 8 LSTM layers (GNMT-8) and 16 LSTM

layers (GNMT-16) in Table 2.2). Using 1 server on Cluster-A, PipeDream reaches target accuracy

∼1.5× faster than DP for GNMT-8 and GNMT-16. When using 4 servers (16 GPUs) on Cluster-A,

PipeDream reaches target accuracy 2.9× (GNMT-8) and 3× (GNMT-16) faster than DP. We show in

§2.5.5 that PipeDream significantly reduces communication compared to DP, thus reducing its time

to target accuracy.

On 2 servers (16 GPUs) of Cluster-B, PipeDream reaches target accuracy 3.1× faster than DP

for GNMT-16, choosing a “straight” configuration (no stage replication). For GNMT-8, PipeDream

falls back to data parallelism, since the smaller model has lower communication overhead on servers

with fast NVLink interconnects between GPUs on the same server, and GNMT-8 does not have enough

layers for a 16-deep straight pipeline.

Language Modeling. This model is made up of six LSTM layers that contain a large number of

model parameters (0.41GB), making data-parallel training inefficient. Using a single server on

Cluster-A, PipeDream reaches target accuracy 4.3× faster than DP. PipeDream chooses a “straight”

configuration that reduces communication by 88% compared to DP.

Video Captioning. PipeDream chooses to use a 2-1-1 configuration for the S2VT on Cluster-C,

reducing communication by 85% compared to DP, which in turn allows it to reach target accuracy

3× faster than DP.

Comparison to MLPerf v0.5. For ResNet-50 and GNMT-8, we observe that our data-parallel base-

line on a single server with 8 GPUs in Cluster-B is comparable to the MLPerf v0.5 entry that uses a
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Figure 2.11: Communication overhead of data-parallel training using different server instances using
PyTorch 1.1 and NCCL [18] for a GNMT-8 model with fp16 and fp32 precision.

similar hardware configuration. However, we observe that per-epoch times on public cloud servers

are slower than official MLPerf v0.5 entries for multi-server DP deployments, since slower commu-

nication links on public cloud servers (compared to dedicated clusters used in the MLPerf entries)

make all reduce communication slower. We cannot measure this difference in time-to-accuracy at

the scales used by the MLPerf entries as it is cost prohibitive, but Table 2.3 compares the advertised

training throughput of official MLPerf v0.5 [16] entries with data-parallel runs on p3.16xlarge

instances using the same code. Coleman et al. observed similar results [57], both for official DAWN-

Bench and MLPerf entries.

Furthermore, with 8 GPUs, for GNMT-8, while full precision is slower than the entry using mixed

precision, we use a fp32 baseline to be consistent with the rest of the evaluation in this chapter.

Figure 2.11 shows that communication overheads for data parallelism with mixed precision are

higher than with full precision, and thus the speedups we highlight with pipeline parallelism should

carry over (or improve) with mixed precision training.

Comparison to DP with large batches. Recent work has demonstrated that using large batches

is effective for training ResNet-50 and AlexNet models, especially when combined with Layer-wise

Adaptive Rate Scaling (LARS). [76, 177, 92]. LARS uses different learning rates for each layer

based on the ratio of the weight norm to the gradient norm. Large batches decrease the frequency

of communication, reducing the communication overhead for data parallelism. Figure 2.12 shows

8-server results for data-parallel training of VGG-16 using LARS and large batches on Cluster-C.

Batches of 1024 had the fastest time-to-target-accuracy, while batches of 4096 and 8192 failed to

reach target accuracy, highlighting the lack of generality of such approaches. PipeDream still reaches

target accuracy over 2.4× faster than the fastest data-parallel option (1024 with LARS).

Comparison to Asynchronous Parallelism (ASP). ASP can reduce communication overhead in

data-parallel training. Unlike BSP, which synchronizes parameters after every batch, ASP has no

synchronization overheads, and workers use the most recent parameter data available. The result
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Figure 2.12: Statistical efficiency (accuracy vs. epoch) using LARS (VGG-16, 8 GPUs).

is often poor statistical efficiency. For example, when training VGG-16 on 4 Cluster-B servers, ASP

takes 7.4× longer than PipeDream to reach a 48% accuracy (when we terminate ASP for taking too

long to converge), even though ASP has minimal communication delays. Similar results have been

shown by Chen et al. [50].

Statistical Efficiency. Figure 2.10 shows accuracy vs. epoch for VGG-16 and GNMT-16 on Cluster-

B. We consistently observe that PipeDream reaches target accuracy in a similar number of epochs as

DP (as can be seen by the fact that TTA and epoch time speedups are the same for many rows in

Table 2.2). This highlights the fact that PipeDream’s weight stashing mechanism is able to achieve

statistical efficiency comparable to data parallelism, and that PipeDream’s speedups are due to better

system performance.

2.5.3 Comparison to Other Parallelism Schemes

This section compares PipeDream to other parallelization techniques besides data parallelism.

Model Parallelism. Figure 2.13a compares model parallelism (blue bars), straight pipelines with-

out replication (green bars), and pipelining with stage replication (red bars). For all four models,

pipelining alone increases throughput by 2× or more. For GNMT-8 and GNMT-16, PipeDream’s opti-

mizer chooses not to replicate any stages, resulting in identical configurations for the green and red

bars. For VGG-16 and AlexNet, PipeDream replicates the first stage, leading to speedups of 14.9×
and 6.5× compared to model parallelism.

Hybrid Parallelism. Figure 2.13b shows that pipelining for a configuration that combines data

and model parallelism (similar to those proposed by Krizhevsky et al. [100] and FlexFlow [96, 94])

increases throughput by as much as 80%. In running FlexFlow for AlexNet on Cluster-B (not shown
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Figure 2.13: Comparison of PipeDream (red) to non-DP parallelism techniques for 4-GPU configu-
rations on Cluster-A.

in Figure 2.13b), we observe that PipeDream is 1.9× faster; a speedup due to pipelining over hybrid

parallelism. Note that the same number of bytes are being communicated across workers with

and without pipelining. Speedups are achieved by overlapping compute and communication, and

consequently better utilization of compute resources.

2.5.4 Comparison to GPipe

We compare training GNMT-16 using PipeDream and our implementation of GPipe using 16 GPUs

on Cluster-A and Cluster-B. GPipe does not provide an algorithm for partitioning work across stages,

so we use the same partitions as PipeDream. GPipe also does not provide an algorithm for how many

inputs should be permitted into the pipeline. When we set the number of inputs to be equivalent to

“NOAM” in PipeDream (§2.3.2), GPipe experiences 55% and 71% throughput slowdowns compared

to PipeDream on Cluster-A and Cluster-B, respectively. Setting the number of inputs in the pipeline

for GPipe to the largest number that does not cause an out-of-memory exception, leads to throughput

slowdowns of 35% and 42% on Cluster-A and Cluster-B, respectively. These throughput slowdowns

are due to more frequent pipeline flushes compared to PipeDream (Figures 2.3 and 2.4).
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Figure 2.14: Real vs. optimizer’s predicted throughput for VGG-16 with 16 workers. Each symbol
represents a different partition, including the triangle for vanilla data-parallelism and the diamond
for the optimizer’s selection.
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Figure 2.15: Memory footprint for various models using 4 GPUs. Per-GPU memory footprint is
shown for data parallelism, and is identical on all GPUs.

2.5.5 Microbenchmarks

We evaluate PipeDream’s optimizer, its communication overhead and memory footprint, and the

effect of the number of in-flight inputs on throughput and memory footprint.

Optimizer. PipeDream’s optimizer is efficient, generating optimal training configurations in under

8 seconds for all models and hardware deployments evaluated. As one example, Figure 2.14 shows

real vs. predicted throughputs for various configurations for VGG-16 with 16 workers. Predicted

and real throughputs are strongly linearly correlated, and the optimizer picks the best configuration

among those tested.

Memory Footprint. Figure 2.15 shows the per-stage memory footprint of PipeDream for 4-stage

configurations for three different models. PipeDream’s worst-case memory footprint is on par with

that of data parallelism, even though PipeDream stashes multiple weight and activation versions.

This is because each stage in PipeDream is responsible for only a fraction of the total number of

weights and activations in the model. As PipeDream scales to include more stages, the memory
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Figure 2.16: Bytes communicated per training sample by data-parallel (DP) and the best non-DP
configurations for 4 GPUs on Cluster-A.

footprints remain consistent as discussed in §2.3.3.

Communication Overhead. Figure 2.16 shows the amount of communication performed per train-

ing sample in the best non-DP configuration compared to the amount of communication performed

in data-parallel training. For GNMT-8, GNMT-16, and VGG-16, the communication overhead for the

best non-DP configuration is far less than the communication overhead for the DP configuration. For

ResNet-50, the amount of communication for the best non-data-parallel configuration is higher than

the DP configuration, thus explaining why PipeDream’s optimizer chooses to perform ResNet-50

training using a data-parallel configuration.

Effect of Number of In-Flight Inputs. Figure 2.17 shows the effect of varying the number of

in-flight inputs on throughput and memory overhead for GNMT-8. We make three observations:

1. Memory footprint with no pipelining is different across stages, since PipeDream’s optimizer

tries to load balance compute and communication, and not memory footprint (the working set

still fits comfortably in GPU memory).

2. As the number of in-flight inputs increases from 2 to 7, memory footprint increases because

the number of weights and activations that need to be stashed increases proportionally.

3. In our experiments, setting the number of in-flight inputs to 4 (NOAM) and 7 give the highest

throughput. While the working set of stages fits in GPU memory (16 GB), if required, the

number of in-flight inputs can be decreased to trade throughput for reduced memory footprint.

Throughput increases as this number increases since communication can be more easily hidden

as the number of inputs in the pipeline increases.
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Figure 2.17: Effect of number of in-flight inputs (number in parentheses in legend) on throughput
and memory overhead for GNMT-8 on 4 V100s in Cluster-A.

2.6 Summary

Pipeline parallelism can help reduce the communication overheads that can bottleneck data paral-

lelism. PipeDream automatically partitions DNN training across workers, combining pipeline par-

allelism with data parallelism to better overlap computation with communication while minimiz-

ing the amount of data communicated. PipeDream proposes a pipelining schedule with relaxed

semantics compared to data parallelism, but can still achieve large end-to-end speedups in time-

to-accuracy. Compared to state-of-the-art approaches, PipeDream’s automated scheduling approach

helps complete training up to 5.3× faster across a range of DNNs and hardware configurations.



Chapter 3

Memory-Efficient Pipeline Parallelism

for Large Model Training

3.1 Introduction

In the quest to achieve higher accuracy across a range of tasks, DNN models have grown in size,

often by scaling up the number of parameters in existing architectures [66, 135, 136, 45]. It is

challenging to train large models with billions of parameters. Modern accelerators have limited

memory, which means that the model parameters and intermediate outputs that need to be in accel-

erator memory during training might not fit on a single accelerator. One of the solutions researchers

and practitioners have turned to is model-parallel training [62, 55], where a model is partitioned

over multiple accelerator devices. However, model parallelism, when traditionally deployed, can

either lead to resource under-utilization [125] or high communication overhead with good scaling

only within a multi-GPU server [153], and consequently an increase in training time and dollar cost.

Recent work has proposed pipelined model parallelism to accelerate model-parallel training. For

example, GPipe [86] and PipeDream (Chapter 2) push multiple inputs in sequence through a series

of workers that each manage one model partition (contiguous layers in the model), allowing differ-

ent workers to process different inputs in parallel. Näıve pipelining can harm model convergence

due to inconsistent weight versions between the forward and backward passes of a particular input.

Existing techniques trade off memory footprint and throughput in different ways to avoid this. GPipe

maintains a single weight version, but has periodic pipeline flushes where the pipeline is drained of

inputs to update weights (Figure 3.1a); these flushes limit overall throughput as resources are idle.

PipeDream does not periodically flush the pipeline but stores multiple weight versions, which in-

creases throughput but also increases the memory footprint, making the training of large models

infeasible due to memory constraints. Efficient training of large models requires an approach with

41
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Figure 3.1: Timelines of different pipeline-parallel executions. Without loss of generality, forward
and backward passes are assumed to take twice as long as forward passes; forward passes are
shown in blue and backward passes are shown in green. Numbers indicate microbatch ID, time
is shown along x-axis, per-worker utilization is shown along the y-axis. GPipe maintains a single
weight version, but periodically flushes the pipeline. PipeDream does not introduce periodic pipeline
flushes, but maintains multiple weight versions. For PipeDream, weight versions before and after
the backward pass of input 5 are shown.

both high throughput and low memory footprint.

Additionally, the performance of a pipeline-parallel system is dependent on how DNN model

operators are partitioned over workers. This is challenging for three reasons:

• Memory Capacity Constraints: Parameters and intermediate activations associated with a

model partition need to fit in the main device memory of the accelerator.

• Heterogeneous Network Interconnects: Training deployments today feature heterogeneous

network topologies, with higher-bandwidth links between devices on the same server.

• Large Search Space for Operator Placement: As model sizes increase, splitting an oper-

ator graph becomes computationally expensive since the number of distinct partitionings is

exponential in the model size.
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In this chapter, we introduce double-buffered weight updates (2BW), a pipeline schedule for effi-

cient (high throughput and low memory footprint) pipeline-parallel training of DNN models with

billions of parameters. 2BW reduces the memory footprint of training while avoiding pipeline flushes.

We leverage the fact that every input’s generated gradient does not need to be applied to weights im-

mediately, and instead can be accumulated into a “coalesced” gradient to limit the number of weight

versions maintained. Instead of flushing the pipeline before using newly updated weights, 2BW uses

the new weights for inputs newly admitted into the pipeline, while using the previous weight ver-

sion, called the shadow version, for already in-flight inputs. This double buffering of weights at each

worker yields a pipelining scheme with higher throughput than GPipe (no pipeline flushes) and

better memory efficiency than PipeDream (2 weight versions, versus worst case of d in PipeDream

for a depth-d pipeline). 2BW introduces a constant weight delay term of 1, consistent across stages,

while updating weights (weight update equation of W (t+1) = W (t) − ν · ∇f(W (t−1))), which we

show has empirically similar model convergence to vanilla weight updates (§3.4.1). We also present

a variant of 2BW (called the PipeDream-Flush schedule) that trades off throughput for even lower

memory footprint and vanilla semantics (weight update equation of W (t+1) =W (t)− ν ·∇f(W (t))).

Second, we provide a planning algorithm that yields effective parallelization schemes for many

of today’s large model architectures. The 2BW planner partitions DNN operators over the available

workers while taking into account the memory capacities of the accelerator devices, and addresses

the three challenges highlighted earlier. The 2BW planner exploits the repetitive structure of large

DNNs, e.g., transformer layers in BERT [66], to explore the space of schedules where each stage in

the pipeline is replicated equally. This choice reduces the size of the search space explored drastically

compared to existing work like PipeDream and FlexFlow [96], while still providing effective model

splits in practice. The planner determines the size of each model partition, batch size, and whether

to use memory-saving optimizations like activation recomputation [53, 77]: it considers the impact of

these decisions on both throughput and memory footprint, unlike PipeDream and FlexFlow. Finally,

the planner tries to ensure expensive communication stays on high-speed intra-server interconnects.

This facilitates the automated scheduling of operators in the training computation graph for large

transformer-based language models widely used in Natural Langauge Processing applications.

We find that the Adam optimizer with 2BW has a similar training loss trajectory to vanilla Adam

with the same batch size, with similar accuracy on downstream finetuning tasks. PipeDream-2BW

achieves end-to-end speedups of 1.3× to 20× for various GPT models compared to an optimized

model-parallel baseline. PipeDream-2BW is up to 3.2× faster than GPipe, and is able to train large

transformer models that vanilla PipeDream cannot fit in memory.
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3.2 PipeDream-2BW System Design

PipeDream-2BW uses memory-efficient pipeline parallelism to train large models that do not fit on

a single accelerator. Its double-buffered weight update (2BW) and flush mechanisms ensure high

throughput, low memory footprint, and weight update semantics similar to data parallelism. PipeDream-

2BW splits models into stages over multiple workers, and replicates each stage an equal number of

times (with data-parallel updates across replicas of the same stage). Such parallel pipelines work

well for models where each layer is repeated a fixed number of times (e.g., transformer models).

3.2.1 Double-Buffered Weight Updates (2BW)
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Figure 3.2: Timeline showing PipeDream-2BW’s double-buffered weight update (2BW) scheme with
time along x-axis. Without loss of generality, backward passes are assumed to take twice as long
as forward passes. PipeDream-2BW only stashes two weight versions at every worker, reducing the
total memory footprint while no longer requiring expensive pipeline stalls. W (v)

i indicates weights
on worker i with version v (contains weight gradient generated from input v). New weight versions
are generated in checkered green boxes; W (4)

4 is first used for input 9’s forward pass.

PipeDream-2BW uses a novel double-buffered weight update (2BW) scheme in conjunction with

1F1B scheduling [125], where each worker alternates between forward and backward passes for

different inputs, to ensure that the same weight version is used in both the forward and the backward

pass for a particular input (Figure 3.2). 2BW has a lower memory footprint than PipeDream and

GPipe, and also avoids GPipe’s expensive pipeline flushes.

Gradients are computed at the granularity of smaller microbatches. For any input microbatch,

PipeDream-2BW uses the same weight version for an input’s forward and backward passes. Updates

are accumulated over multiple microbatches before being applied at the granularity of a batch,

limiting the number of weight versions generated and maintained. Figure 3.2 shows an example

timeline of 2BW. PipeDream-2BW generates a new weight version once every m microbatches (m ≥
p, the number of pipeline stages). For simplicity, we will initially assume that m = p (p is 4 in
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Figure 3.2). A new weight version cannot be used immediately. In particular, in-flight inputs cannot

use the newest weight version for their backward passes (for example, input 7 on worker 3 at t = 21),

since the forward pass for these inputs was already initiated using an older weight version on a

different stage. Thus, newly generated weight versions need to be buffered for future use. However,

the total number of weight versions that need to be maintained is at most 2, since the weight version

used to generate a new weight version can immediately be discarded (no future inputs that pass

through that stage use the old weight version any longer). For example, in Figure 3.2, each worker

can discard W (0)
i once they are done processing the backward pass for input 8 since all subsequent

inputs use a later weight version for both their forward and backward passes.

The weight version a given input microbatch k (1-indexed) uses is max(b(k−1)/mc−1, 0), where

m is the number of microbatches in a batch (4 in Figure 3.2). This weight version is the same for

both the forward and backward passes for input k. m can be any number ≥ p; additional gradient

accumulation (larger m) increases the global batch size.

Memory Footprint. PipeDream-2BW maintains 2 weight versions, and activation stashes for all

in-flight microbatches. The number of in-flight microbatches at any stage is at most the number

of pipeline stages (p); this follows from reusing the 1F1B schedule from Chapter 2. With acti-

vation recomputation, PipeDream-2BW’s memory footprint can be decreased, since only input ac-

tivations (as opposed to the full intermediate activation) need to be maintained for all in-flight

microbatches. With activation recomputation, PipeDream-2BW’s worst-case memory footprint is
2|W |
p + |Atotal(b)|

p + p|Ainput(b)|. |W | is the size of weight parameters for the full model, |Atotal(b)|
is the size of intermediate activations for microbatch size b for the full model, and |Ainput(b)| is the

size of input activations for microbatch size b for a pipeline stage.

In comparison, GPipe needs to checkpoint potentially a much larger number of input activations

– proportional to the total number of microbatches accumulated within the pipeline before applying

a weight update (m). With activation recomputation, GPipe’s memory footprint with a per-GPU

microbatch size b is |W |p + |A
total(b)|
p +m|Ainput(b)|. Since |W | � |A(b)| for even small b for most mod-

els [89], the memory savings from maintaining one fewer weight version is small. To achieve high

throughput, GPipe must use a large value of m to amortize away the cost of pipeline flushes; at such

high m, its memory footprint is higher than PipeDream-2BW. Additionally, due to its higher mem-

ory footprint, GPipe must always use activation recomputation. Activation recomputation, however,

reduces throughput by about 33%, and should be avoided if possible.

Semantics. We can also formalize the semantics of 2BW. For this discussion, we assume an unrepli-

cated pipeline with p stages. If b is the per-GPU microbatch size, then gradients are averaged over

m microbatches; thus, the effective batch size is B = b ·m.

We denote W (t) as the weight version after t batches of size B. ∇f(W ) is the gradient averaged



CHAPTER 3. MEMORY-EFFICIENT PIPELINE PARALLELISM FOR LARGE MODEL TRAINING 46

over the B samples in the batch. Vanilla batch SGD (f is the loss function, ν is the learning rate)

then has the following weight update equation(note that with 2BW, the delay term at every stage is

the same; consequently, we get rid of the superscripts for brevity in this chapter):

W (t+1) =W (t) − ν · ∇f(W (t)).

2BW’s weight update semantics (with a delay term of 1 across all stages) are almost unchanged:

W (t+1) =W (t) − ν · ∇f(W (t−1)).

We show that this delay term does not affect model convergence significantly in §3.4.1. Intuitively,

the parameters of the model do not change significantly across single iterations, so W (t) ≈ W (t−1).

The semantics with a replication factor greater than 1 is similar, with the batch size multiplied by

the number of replicas (as with regular data parallelism). Other momentum-based optimizers such

as Adam can be similarly analyzed (momentum term uses a weight gradient computed on a 1-stale

weight version instead of latest version). Extra shadow variables are not needed. For example, mt

in batch SGD with momentum can be computed as (ignoring bias corrections):

mt = β ·mt−1 + (1− β) · ∇f(W (t−1)).

The final weight update equation is then:

W (t+1) =W (t) − ν ·mt.

3.2.2 Weight Updates with Flushes (PipeDream-Flush)

We also propose a second memory-efficient pipeline schedule called PipeDream-Flush. It has lower

memory footprint than 2BW and vanilla optimizer semantics, at the cost of lower throughput. This

schedule reuses the 1F1B schedule from PipeDream [125], but maintains a single weight version

and introduces periodic pipeline flushes to ensure consistent weight versions across weight updates.

Timelines for PipeDream-Flush and GPipe with 2 pipeline stages are shown in Figure 3.3.

Memory Footprint. With PipeDream-Flush, the total number of in-flight “active” input activations

is less than or equal to the pipeline depth, giving it lower memory footprint than GPipe, which has

to maintain input activations proportional to the number of microbatches over which gradients are

averaged (m). PipeDream-Flush’s memory footprint is also lower than PipeDream-2BW since it only

needs to maintain a single weight version (versus 2 with PipeDream-2BW).
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Figure 3.3: Timelines of GPipe and PipeDream-Flush for 2 stages. Both GPipe and PipeDream-Flush
use pipeline flushes; PipeDream-Flush alternates between forward and backward passes in steady
state to keeping memory footprint low compared to GPipe by limiting activation stashes to only
in-flight microbatches.

Semantics. Periodic pipeline flushes ensure that weight updates can be performed with gradients

computed using the latest weight version. This results in weight updates of the form W (t+1) =

W (t) − ν · ∇f(W (t)) (same as GPipe). We compare 2BW’s statistical efficiency (rate of model conver-

gence) to the vanilla semantics of PipeDream-Flush, GPipe, and data parallelism, in §3.4.1.

3.2.3 Equi-replicated Stages (Parallel Pipelines)

PipeDream-2BW executes DNN training using a hybrid parallelization scheme which combines data

and model parallelism with input pipelining. Since large deep models today feature extremely

repetitive structures, with the same block repeated multiple times, a simple way of load balancing

computation and communication involves breaking up a model into stages with an equal number

of blocks and replication factors. Model training in PipeDream-2BW can thus be thought of as a col-

lection of parallel pipelines (Figure 3.4), where inputs and intermediate output activations within

a pipeline do not ever need to be sent to workers responsible for a different pipeline. Intermediate

activations and gradients can be communicated within a pipeline using point-to-point communica-

tion primitives, such as send and recv. As with PipeDream, weight gradients need to be aggregated

across stage replicas in different pipelines. Figure 3.4 shows an example: each model copy is split

across 3 workers (number of stages, p is 3), and each stage is replicated twice (number of pipelines

or data-parallel size, d is 2). Stage replicas can be placed on the same server so that expensive
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Figure 3.4: Example PipeDream-2BW (2, 3) configuration. The model is partitioned into 3 stages (p is
3) and each pipeline is replicated twice (w is 2). Each pipeline replica is shown in a different color.
The input batch is split over the parallel pipelines.

all-reduce updates are between GPUs on the same server with high-bandwidth interconnects.

3.3 Planner

PipeDream-2BW’s planner determines how to split a model over the available compute devices by

exhaustively searching over the reduced search space of all possible parallel-pipeline configurations.

The planner also determines whether memory-saving optimizations should be deployed, and the

per-GPU microbatch size and degree of gradient accumulation, given a maximum safe global batch

size verified to not compromise model convergence (e.g., determined from past hyperparameter

sweeps without pipelining).

PipeDream-2BW’s planner uses a cost model for the compute times and memory footprints of in-

dividual blocks in the model. Computation time and memory cost functions allow PipeDream-2BW to

reason about the impact of the data-parallel size, number of pipeline stages, and memory-saving op-

timizations (such as activation recomputation) on throughput and memory footprint. For example, a

configuration with a greater number of pipeline stages has additional memory capacity, allowing for

a larger maximum per-GPU microbatch size; this can increase the arithmetic intensity (number of

floating point operations performed per memory load) of kernels [97], and consequently through-

put. Communication times for tensors can be estimated by dividing the size of the tensor by the

respective bandwidth. Expensive communication (e.g., large tensors, or all-reduce communication

needed to coalesce weight gradients across stage replicas) can be placed on high-bandwidth links

within the server by orienting pipelines appropriately.

Profiling for cost modeling can be done in two ways: end-to-end for each distinct configuration,

or extrapolating from an individual block’s measurements. End-to-end profiling is cheap (2 to 3

minutes per configuration), which means total profiling time is still a couple of hours (compared

to the days to weeks needed for model training). Optimal configurations can be reused for a given
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server and model deployment. We describe how per-block time and memory measurements can be

extrapolated in §3.3.3 – this is even cheaper, but provides less accurate cost estimates. The highest-

throughput configuration is chosen that also fits within the accelerator memory capacity.

3.3.1 Activation Recomputation

Activation recomputation is a common technique [86, 53, 77] that trades off extra computation for a

lower memory footprint. With activation recomputation, activation stashes are not left materialized

on the device between forward and backward passes; instead, only input activations on each stage

are stashed, and the remaining activations needed in the backward pass are recomputed when

required by re-running the forward pass. Activation recomputation trades off extra computation for

a lower memory footprint.

Activation recomputation is useful for two reasons: it can enable larger per-GPU microbatch

sizes to fit in memory, which can improve device throughput by increasing the arithmetic intensity

of kernel. It can also enable the training of large models. Concretely, in some cases, the target

accelerator device does not have sufficient memory capacity to store full activation stashes for all

in-flight microbatches. This is especially true for deep pipelines, since the number of in-flight inputs

with the 1F1B schedule from Chapter 2 (used by both PipeDream-2BW and PipeDream-Flush) is

proportional to the number of pipeline stages (p).

3.3.2 Partitioning Algorithm

Putting it all together, given a total memory capacity M , PipeDream-2BW’s planner first determines

the largest per-GPU microbatch size that fits on a given worker (and the corresponding through-

put) with and without each memory-savings optimization deployed using a memory cost function.

The partitioning algorithm also verifies that the resulting global batch size is lower than the maxi-

mum safe batch size B . Each memory-savings optimization can be integrated into PipeDream-2BW’s

planner by specifying a corresponding throughput and memory cost function.

PipeDream-2BW’s planner then sweeps all (d, p) values to determine the best pipeline configu-

ration for a given model and hardware deployment. Configurations with memory footprint higher

than the memory capacity M of the device (modeled by the MEMORY(.) cost function) are discarded.

Gradient accumulation can be used to increase the batch size to B. The partitioning algorithm aims

to pick a configuration that has a high compute-to-communication ratio, while accounting for the

communication time across stages in the same pipeline and across replicated stages (modeled by the

THROUGHPUT(.) cost function). Pseudocode is shown in Algorithm 1.
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Algorithm 1 Algorithm for PipeDream-tbw’s Planner.

Input: Model m, memory capacity M , m’s associated search function SEARCH(.), m’s associated
throughput cost function THROUGHPUT(.), m’s memory footprint cost function MEMORY(.), maxi-
mum safe batch size B.
Return: Optimal data-parallel size and number of pipeline stages dopt and popt, optimal per-GPU
microbatch size bopt, boolean whether activations should be recomputed ropt, optimal degree of
gradient accumulation gopt.

Initialize tmax = 0, dopt = NULL, popt = NULL
for d = 1 to N do

for p = 1 to N/w do
// For given data-parallel size d, number of pipeline stages p, and batch size B, find optimal

microbatch size and whether activation recomputation should be performed.
b, r = m.SEARCH(d, p,B)

t = m.THROUGHPUT(d, p, b, r)
if m.MEMORY(d, p, b, r) > M then

continue
if t > tmax then

tmax = t, dopt = d, popt = p, bopt = b, ropt = r

gopt = B/(N · bopt) // To reach batch size B.

3.3.3 Closed-Form Cost Functions

For every possible configuration of data-parallel and pipeline-parallel sizes, PipeDream-2BW’s planner

explores the benefit of pipelining and each space-saving optimization. For example, with activation

recomputation as a target memory-savings optimization, PipeDream-2BW considers three executions:

• Model and data parallelism without pipelining (with the largest per-GPU microbatch size that

fits in memory).

• Hybrid parallelism with pipelining and without activation recomputation (all required weight

versions and activation stashes in memory for in-flight microbatches).

• Hybrid parallelism with pipelining and recomputation.

PipeDream-2BW’s planner estimates the throughput and memory footprint of each of these possi-

ble executions using a cost model. PipeDream-2BW’s planner then tries to find the configuration with

highest throughput that also fits in main device memory of the accelerators used (memory capacity

provided as input). In this section, we show one such cost model for throughput and memory.

In our experiments, we used profile-based cost functions that run configurations end-to-end for a

couple of hundred iterations. However, performance of different parallel configurations can also be

estimated using closed-form expressions that use more fine-grained profile information (e.g., time

and memory footprint of each transformer block). We present one such cost model here.
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Cost Function for THROUGHPUT(.)

The throughput of various hybrid-parallel setups with and without pipelining can be modeled using

the times of forward and backward passes obtained from a simple profiling step. Let b be the largest

per-GPU microbatch size without additional weight and activation versions, and b′ be the largest

per-GPU microbatch size that can fit on the device when multiple versions are needed (b′ ≤ b). As

before, d and p are the data-parallel size and number of pipeline stages.

Consider the following notation:

• T comp
i (b, d, p) is the compute time of stage i with a per-GPU microbatch size b.

• T comm
i→j (b, d, p) is the communication time of activations and gradients between stages i and j

with microbatch size b.

• T comm
i (b, d, p) is the communication time of exchanging gradients between d replicas of stage i

with microbatch size b.

We assume that the global batch size used is B. With data-parallel size d and microbatch size b,

data-parallel communication is required every m(b, d) = B/(d · b) microbatches.

Then, without pipelining, each microbatch of size b takes the following computation time, t:

t =
∑
i

max(T comp
i (b, d, p) +

∑
j

T comm
j→i (b, d, p),

1

m(b, d)
· T comm

i (b, d, p)).

With pipelining, computation of different stages can be overlapped. A microbatch of size b′ can

then be processed every t seconds, where t is given by the expression:

t = max
i

max(T comp
i (b′, d, p)+∑
j

T comm
j→i (b′, d, p),

1

m(b′, d)
· T comm

i (b′, d, p)).

With activation recomputation, the number of floating point operations increases, since forward

passes need to be repeated to recompute the activation stashes needed in the backward pass. We

use a constant multiplier cextra to represent this. cextra = 4/3 is a reasonable value for this constant,

since the backward pass typically takes twice as long as the forward pass. cextra can also be measured

empirically. Arithmetic intensity might also increase, which is captured by T comp
i (.) being a function

of the microbatch size b. Communication time remains unchanged from before. Every b inputs can
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now be processed in time t, where t is given by,

t = max
i

max(cextra · T comp
i (b, d, p)+∑

j

T comm
j→i (b, d, p),

1

m(b, d)
· T comm

i (b, d, p)).

The throughput in samples per second of each of these setups is then the corresponding per-GPU

microbatch size (b or b′) divided by t.

Estimating T comp(.). T comp
i (b, d, p) is the compute time of stage i with per-GPU microbatch size b,

and can be computed by summing up the forward and backward pass times of all blocks within the

stage. If the number of pipeline stages is p and the total number of blocks in the model is B, then

the total number of blocks in a given stage is B/p. Forward and backward pass times for each stage

can be estimated by profiling 100–200 iterations of training.

Estimating T comm(.). Communication times can be similarly modeled. Let the size of the associ-

ated parameter with B total blocks be |W |, and the size of the block’s input and output activations

be |Ainp.+out.(b)|. With p pipeline stages, each pipeline stage has 1/p of the model parameters.

The time to communicate activations across stages can be computed as (factor of 2 for gradients

in the backward pass),

T comm
i→j (b, w, p) =

2|Ainp.+out.(b)| · I(p > 1)

bwdthin-pipeline(p)
.

The time to communicate weight gradients across stage replicas can be computed similarly given

a bandwidth function bwdthcross-pipeline(d), and the number of bytes communicated during all-reduce.

The number of byes communicated in an all-reduction can either be explicitly measured, or esti-

mated using a closed-form expression.

bwdthin-pipeline(p) and bwdthcross-pipeline(d) represent the bandwidths for in-pipeline and cross-

pipeline communication. These bandwidth functions can respect hierarchical network topologies.

For example, if d is less than the number of workers in a single server, communication can be

performed entirely within a server, using the higher intra-server bandwidth.

bwdthcross-pipeline(d) =

Bhigh if d < number of GPUs in server,

Blow otherwise.
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Cost Function for MEMORY(.)

The memory footprint can similarly be modeled using the sizes of activations and weights obtained

from a profiling step. Let the total size of the weight parameters for the entire model be |W |, let the

total size of the activations given a microbatch size b for the entire model be |Atotal(b)|, and let the

size of the input activations for a single stage be |Ainput(b)|. With a pipeline of p stages, each pipeline

stage has weight parameters of size |W |/p, and activations of size |Atotal(b)|/p.

Without Activation Recomputation. Without activation recomputation, 2BW maintains 2 different

versions of the weight parameters. PipeDream-2BW also maintains p activation versions (the total

number of in-flight activations). This means the total PipeDream-2BW memory footprint is:

2|W |
p

+
p|Atotal(b)|

p
+ p|Ainput(b)|.

With Activation Recomputation. With activation recomputation, the total number of activation

versions in GPU memory at any point in time is 1. This means that the PipeDream-2BW memory

footprint with p stages is:
2|W |
p

+
|Atotal(b)|

p
+ p|Ainput(b)|.

3.4 Evaluation

In this section, we show that the Adam optimizer with 2BW has similar semantics to vanilla Adam, and

that PipeDream-2BW and PipeDream-Flush are able to train large models faster than existing model-

parallel approaches including Megatron [153], and existing pipelining approaches like GPipe [86].

Hardware. We show results on two different hardware setups on AWS: eight 8×V100 servers (64

GPUs) with NVLink and 16GB per-GPU memory, and a single 8×V100 server (p3.16xlarge instances).

Implementation. Our implementation uses PyTorch and is adapted from the Megatron reposi-

tory [14]; we verified that single-worker performance with this implementation achieves about 45

TFLOPS on a 355M-parameter GPT model and is competitive with existing state-of-the-art open

source implementations from NVIDIA [19]. All results shown are with mixed precision.

Models. We evaluate PipeDream-2BW on BERT [66] and GPT [136], large transformer-based lan-

guage models used for a number of NLP applications. In particular, most of our experiments are

performed with GPT models with 1.3, 2.2, and 3.9 billion parameters, with similar layer dimensions

to those used in the Megatron paper [153].
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(a) BERT, 355M (batch size = 1024).
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(b) GPT, 355M (batch size = 512).

Figure 3.5: Training and validation loss when pre-training BERT and GPT models with vanilla Adam
and Adam with 2BW.

Baselines. We compare PipeDream-2BW to two types of baselines: (a) model parallelism without

pipelining (tensor model parallelism used in Megatron, and inter-layer model parallelism); and (b)

GPipe (we extend GPipe to use parallel pipelines, and refer to this enhanced version as GPipe in

the rest of this chapter), which performs pipeline parallelism. We do not compare to PipeDream or

data parallelism for the entire model since they cannot fit the above models in memory when using

16-GB V100 GPUs. With 64 GPUs, we use data parallelism across stages to scale up training.

Main Takeaways. We make the following observations:

• Quality of Convergence: 2BW weight update semantics yield pre-trained models which pro-

duce comparable accuracy on downstream finetuning tasks to vanilla Adam (GPipe and

PipeDream-Flush) with the same batch size.

• Comparison to Model Parallelism: PipeDream-2BW is able to train a 3.8 billion-parameter

GPT model up to 20× faster compared to non-pipelining approaches.

• Comparison to Other Pipelined Approaches: PipeDream-2BW is up to 3.2× faster than GPipe.

3.4.1 Quality of Convergence of 2BW

We pre-trained 355M-parameter BERT and GPT models with vanilla Adam and Adam with 2BW; we

then finetuned the resulting BERT models. We note that GPipe, PipeDream-Flush, and DP have

identical semantics, and hence are equivalent baselines (“Vanilla”). To provide a fair comparison,
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Task Metric Vanilla Vanilla (90%) 2BW

MNLI Overall Accuracy 87.77% N/A 87.82%
RACE Overall Accuracy 80.06% 79.30% 79.48%

Table 3.1: Comparison of BERT models pre-trained with vanilla (all and 90% of iterations) and 2BW

optimizers on finetuning tasks.

we use the same hyperparameters, including batch size, used by Megatron [153] to train these BERT

and GPT models. For BERT, we use a batch size of 1024, and for GPT, we use a batch size of 512. We

use the Adam optimizer with standard hyperparameters (learning rate of 10−4 with initial warmup

and subsequent linear decay, maximum sequence length of 512), and mixed precision. We used the

OpenWebText dataset [23] for pretraining. Figure 3.5 shows the training and validation loss for

the two models. The training and validation losses for the 2BW runs track the vanilla runs almost

identically after the first 100,000 iterations (when the model is changing more rapidly and the delay

term matters more).

To further validate the quality of the pre-trained model, we finetuned the pre-trained vanilla and

2BW BERT models on downstream MNLI and RACE tasks [170, 104]. Both pre-training and fine-

tuning were performed with the same hyperparameter and training setups, and we did not perform

hyperparameter tuning for either – our goal here is to show that 2BW has nearly identical semantics

to the corresponding vanilla optimizer. As shown in Table 3.1, the accuracy on each of these tasks

is similar after finetuning. We also evaluated the vanilla and 2BW GPT models on the Wikitext-103

test dataset and got similar test perplexities (19.28 vs. 19.56); test perplexities match exactly when

“Vanilla” is run for 20% fewer iterations.

3.4.2 Throughput

Figure 3.6 shows the throughputs of various PipeDream-2BW, PipeDream-Flush, and baseline config-

urations using 8 and 64 V100s with a sequence length of 512 for various large GPT models. Results

with BERT models are similar (§3.4.6). We compare to two different forms of model parallelism,

as well as GPipe. Data parallelism is not a viable baseline for these large models due to its high

memory overhead. In these experiments, we use activation recomputation, and the largest per-GPU

microbatch size that fits on the 16-GB V100 GPUs. We use the best configuration recommended by

PipeDream-2BW’s planner for all comparisons: 8-deep configurations for the model with 2.2 billion

parameters, and 16-deep configurations for the model with 3.8 billion parameters. For each model,

we show two different batch sizes to show the impact of batch size on throughput for approaches

that use periodic flushes.
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(a) GPT, 2.2B, 8-way model parallelism (8×V100s).
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(b) GPT, 2.2B, 8-way model parallelism (64×V100s).

512 2048
Batch size

0
30
60
90

120

Th
ro

ug
hp

ut
(s

eq
s/

se
co

nd
)

Inter-layer MP
Tensor MP
GPipe
PipeDream-Flush
PipeDream-2BW

(c) GPT, 3.8B, 16-way model parallelism (64×V100s).

Figure 3.6: Throughput of various systems for different batch sizes for GPT models, using 8×16GB-
V100 servers.

Model Parallelism without Pipelining. We compare against two model parallelism approaches:

tensor model parallelism used by Megatron [153] where each layer is divided among all model-

parallel workers, and inter-layer model parallelism where layers are sharded over the workers but

inputs are not pipelined. On a single node, PipeDream-2BW is faster than tensor MP by 1.3×. This

grows to 20× on 64 GPUs for the model with 3.8 billion parameters, when the all-to-all commu-

nication used by tensor MP needs to be performed across servers, which is expensive using AWS

instances (bandwidth across multi-GPU servers is much lower than the bandwidth within server).

Compared to inter-layer MP, pipelining with flushes increases throughput by up to 4.1× for small

batch sizes, and by up to 5.3× for large batch sizes, on the 2.2-billion model. 2BW is up to 6.1×
faster than inter-layer MP.

GPipe. PipeDream-2BW outperforms corresponding GPipe configurations at the same global batch

size by up to 3.2× due to the lack of periodic pipeline flushes. GPipe natively has high memory
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Figure 3.7: Worst-case memory footprint (in GB) of various systems with 8 V100 GPUs for a GPT
model with 2.2 billion parameters.

footprint due to a large number of activation stashes: consequently, the maximum number of micro-

batches it can admit is small, leading to a larger pipeline bubble and 2.1× worse throughput than

PipeDream-Flush at low batch sizes, and 3× at high batch sizes.

PipeDream-Flush and PipeDream-2BW. Figure 3.6 also compares PipeDream-2BW and PipeDream-

Flush for two different batch sizes with different numbers of microbatches over which gradients are

averaged (m = p · g) within the pipeline. At low batch size, PipeDream-2BW is up to 1.6× faster.

With more gradient accumulation (batch size of 2048), this speedup drops to 15%. However, high

g is not always practical. Both PipeDream-Flush and PipeDream-2BW have weight updates with a

batch size of b · w · p · g, where the total number of workers is w · p. For a large number of workers

(� 64), the batch size is high even with g = 1,m = p, making additional gradient accumulation

infeasible (batch size cannot scale to∞ without affecting model convergence). Indeed, systems like

Megatron [153], that train large transformer models using 512 GPUs, show state-of-the-art results

across tasks using a global batch size ≤ 1024.

3.4.3 Memory Footprint

We measured the worst-case memory footprint of different systems on a GPT model, shown in

Figure 3.7. GPipe runs out of memory at a batch size of 64, due to a larger number of activation

stashes from its all-forward-all-backward schedule, even with activation recomputation (worst case

of m input activation stashes with activation recomputation, compared to p for PipeDream-Flush).

PipeDream-Flush has a slightly higher memory footprint compared to inter-layer model parallelism,

since it needs to maintain activation stashes for more in-flight microbatches. PipeDream-2BW has a

higher memory footprint than PipeDream-Flush due to an additional weight version (but still lower

than GPipe’s).
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Figure 3.8: Throughput of two PipeDream-2BW configurations vs. global batch size for a 1.3-billion
parameter GPT model using 64 V100 GPUs. The legend shows (p, b): the number of pipeline stages
and the microbatch size.

3.4.4 Planning Decisions

In this sub-section, we analyze the implications of pipeline depth and width on performance. Fig-

ure 3.8 shows the throughputs of two PipeDream-2BW configurations for different batch sizes. We

highlight relevant takeaways below.

Inter-Stage Communication. As the global batch size increases with gradient accumulation, through-

put for each configuration increases due to less communication across stage replicas. This is espe-

cially true for configurations with communication across servers (w > 8, p < 8 for 8-GPU servers,

e.g. p equal to 4) where inter-stage all-to-all communication is cross-node and more expensive.

Compute-Communication Ratio. Increasing the pipeline depth decreases the amount of com-

putation in each pipeline stage while keeping the number of bytes communicated between stages

constant. This makes the pipeline more communication-bound, decreasing throughput.

Maximum Per-GPU Microbatch Size. Increasing the pipeline depth increases the maximum mi-

crobatch size that fits in GPU memory. This leads to possibly higher arithmetic intensity and through-

put. In Figure 3.8, we show throughput for two microbatch sizes for the p = 8 configuration; the

larger microbatch size (b = 32) has higher throughput. Smaller pipeline depths cannot fit large

microbatch sizes.

Maximum Model Size. Deeper pipelines support the training of larger models. We show the

empirically measured maximum model size that can be trained with 2BW in Figure 3.9.

These observations illustrate the complexity in picking a configuration. For example, increasing

pipeline depth leads to two effects (decreased compute-communication ratio within the pipeline and

increased arithmetic intensity) that have opposing effects on throughput. PipeDream-2BW’s planner

automates this process for each combination of model, batch size, and number of GPUs.
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Figure 3.9: Maximum model size supported by various pipeline-parallel depths with 64 16-GB V100
GPUs using 2BW.

3.4.5 Maximum Model Size Supported

Figure 3.9 shows the empirically measured maximum model size supported by various pipeline

depths while using 2BW. As can be seen in the figure, deeper configurations provide additional mem-

ory capacity. PipeDream-2BW is able to train models of up to almost 30 billion parameters using

64 16-GB GPUs. As a point of comparison, Megatron-LM [153] was able to train a model with 8.3

billion parameters with 8 32-GB GPUs (2× more memory).

3.4.6 Throughput and Memory Footprint with BERT Models

We also ran PipeDream-2BW on two BERT models: one with 2.2 billion parameters, and another

with 3.8 billion parameters. Figure 3.10 compares PipeDream-2BW’s throughput and Figure 3.11

compares PipeDream-2BW’s memory footprint against the same baselines as before. We see that

results are similar to GPT. One point of difference is that GPipe does not run out of memory at the

batch size of 64 (for GPT, only a batch size of 32 fits in memory, leading to a larger pipeline bubble);

however, GPipe still has higher memory footprint compared to all other baselines.

3.4.7 Impact of Activation Recomputation

Figure 3.12 shows the effect of activation recomputation on throughput for various GPT models.

For a given per-GPU microbatch size, recomputation introduces overhead (capped at 33% since the

backward pass takes twice as long as the forward pass for most operators). However, recomputation

allows for a larger per-GPU microbatch to fit on the worker, sometimes leading to higher throughput

than without activation recomputation: activation recomputation leads to higher throughput in

Figure 3.12b, but not in Figure 3.12a. In the extreme case (not pictured), recomputation makes it

possible to train large models by reducing peak memory footprint of training.
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(a) BERT, 2.2B, 8-way model parallelism (8×V100s).
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(b) BERT, 2.2B, 8-way model parallelism (64×V100s).

512 2048
Batch size

0

40

80

120

160

Th
ro

ug
hp

ut
(s

eq
s/

se
co

nd
)

Inter-layer MP
Tensor MP
GPipe
PipeDream-Flush
PipeDream-2BW

(c) BERT, 3.8B, 16-way model parallelism (64×V100s).

Figure 3.10: Throughput of various systems for different batch sizes for BERT models. Results are
shown with a single 8×V100 server, and with eight 8×V100 servers (with 16GB).
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Figure 3.11: Worst-case memory footprint (in GB) with 8 V100 GPUs for a 2.2B BERT model.

3.5 Related Work and Discussion

In this section, we expand on work related to PipeDream-2BW, and place PipeDream-2BW’s speedups

in context with respect to PipeDream (discussed in Chapter 2), as well as other related work.
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Figure 3.12: Throughput of (1, 8) PipeDream-2BW configurations vs. per-GPU microbatch size for
GPT models using a maximum sequence length of 512 and 8 16-GB-V100 GPUs, with and without
activation recomputation. Activation recomputation helps increase the maximum per-GPU micro-
batch size that fits, especially for larger models, leading to higher throughput in some cases.

Model Parallelism in Real Deployments. NVIDIA used a custom intra-layer model parallelism

scheme in its Megatron system [153] to train a GPT-2 model with 8.3 billion parameters on 64 32-

GB V100 servers by parallelizing matrix multiplications across multiple workers. This approach can

be combined with data parallelism. Multiple all-reductions are needed per layer to coalesce partial

results produced on different GPUs, thus making training communication-bound at high numbers

of model partitions (cross-node communication needed). In comparison, PipeDream-2BW trades off

additional memory footprint (an extra weight version) for lower communication overhead (20×
faster training when using multi-GPU servers on Amazon AWS with limited inter-node bandwidth).

Pipeline Parallelism. We showed quantitative comparisons to existing approaches for pipeline

parallelism in §3.4.2. PipeDream-2BW trains large models up to 3.2× faster than GPipe at low batch

sizes, due to a lack of periodic pipeline flushes, and lower memory footprint (allowing more inputs

to be pushed into the pipeline). PipeDream cannot train these large models. PipeDream-2BW’s lower

memory footprint does come with tradeoffs, however – PipeDream-2BW accumulates weight gradi-

ents over multiple microbatches, increasing the minimum batch size that PipeDream-2BW supports.

Thus, for models that only support very small batch sizes, PipeDream-2BW, PipeDream-Flush, and

GPipe, which perform gradient accumulation within the pipeline, may not be viable.

PipeMare [175] uses asynchronous pipeline parallelism to provide high throughput (no pipeline

flushes) with asynchronous weight update semantics. PipeMare offers two theoretically-motivated

techniques to ensure good statistical efficiency. In contrast, PipeDream-2BW and all the baselines

we compare against in the chapter (traditional data parallel training, PipeDream, GPipe), use syn-

chronous execution where the weights used for the forward pass computation are the same as those

used during the backward pass. PipeDream-2BW’s double buffered weight updates use a 1-stale gra-

dient update that is similar to the vanilla weight update. In our evaluation, we show that we do not

require hyperparameter tuning to generate comparable results to synchronous execution.
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Memory-Saving Optimizations. A rich line of work attempts to decrease the memory footprint

of DNN training. Gist [89] employs lossless and lossy layer-specific encoding schemes to compress

stashed activations. Systems such as Checkmate [90] systematically determine when activation

recomputation [53, 77] should be performed. DeepSpeed [140] partitions optimizer state over

data-parallel replicas instead of replicating it, using a technique called ZeRO. Such orthogonal opti-

mizations can be combined and incorporated in PipeDream-2BW.

Planning Algorithms. PipeDream, DAPPLE [71], and FlexFlow [96] use planning algorithms to

partition operator graphs over multiple accelerators to maximize throughput. Unfortunately, these

planners do not exploit the repetitive nature of modern transformer-based models. For example,

PipeDream’s planner explores O(n3m2) configurations (assuming n layers in the model and m work-

ers). Furthermore, these planners do not consider the effect of memory-saving optimizations, which

are critical for training large models efficiently (e.g., always applying activation recomputation can

make the system 1.33× slower). PipeDream-2BW’s planner, on the other hand, performs an exhaus-

tive search of a much reduced search space since it only considers parallel pipelines (all possible (w, p)

pairs withm workers is O(m2)). Given this small number of explored configurations, Bagpipe’s plan-

ner takes a fraction of a second with a closed-form cost model; PipeDream’s partitioning algorithm

with the same cost model takes about 30 minutes for large models.

3.6 Summary

In this work, we proposed and implemented PipeDream-2BW, a system for memory-efficient pipeline-

parallel training that achieves high throughput, low memory footprint, and data parallelism-like

semantics through a novel weight update double buffering strategy (2BW). PipeDream-2BW uses a

planner to partition a model’s operator graph over training resources in a memory-aware way.

PipeDream-2BW accelerates the training of models with billions of parameters by up to 20× com-

pared to model-parallel baselines, and by up to 3.2× compared to GPipe, on commodity hardware.



Chapter 4

PTD-P Parallelism: Training Models

on Thousands of GPUs

4.1 Introduction

Transformer-based language models [164, 135, 136, 66, 113, 176, 138] in Natural Language Pro-

cessing (NLP) have driven rapid progress in recent years as computation at scale has become more

available and datasets have become larger. Recent work [45, 153] has shown large language mod-

els to be effective zero- or few-shot learners, with high accuracy on many NLP tasks and datasets.

These large language models have a number of exciting downstream applications such as client

feedback summarization, automatic dialogue generation, semantic search, and code autocomple-

tion [1, 15, 7]. As a result, the number of parameters in state-of-the-art deep neural network (DNN)

models for NLP have grown at an exponential rate (Figure 4.1). Training such models, however,

is challenging for two reasons: (a) it is no longer possible to fit the parameters of these models in

the main memory of even the largest GPU (NVIDIA recently released 80GB-A100 cards), and (b)

even if we are able to fit the model in a single GPU (e.g., by swapping parameters between host and

device memory [143]), the high number of compute operations required can result in unrealistically

long training times (e.g., training GPT-3 with 175 billion parameters [45] would require about 288

years with a single V100 NVIDIA GPU). This calls for parallelism. Data-parallel scale-out usually

works well, but suffers from two limitations: a) beyond a point, the per-GPU batch size becomes too

small, reducing GPU utilization and increasing communication cost, and b) the maximum number

of devices that can be used is the batch size, limiting the number of accelerators that can be used.

Various model parallelism techniques have been proposed to address these two challenges. For

example, recent work [152, 153] has shown how tensor (intra-layer) model parallelism, where

matrix multiplications within each transformer layer are split over multiple GPUs, can be used to

63
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Figure 4.1: Trend of sizes of state-of-the-art Natural Language Processing (NLP) models with time.
The number of floating-point operations to train these models is increasing at an exponential rate.

overcome these limitations. Although this approach works well for models of sizes up to 20 billion

parameters on NVIDIA DGX A100 servers (with 8 80GB-A100 GPUs), it breaks down for larger

models. Larger models need to be split across multiple multi-GPU servers, which leads to two

problems: (a) the all-reduce communication required for tensor parallelism needs to go through

inter-server links, which are slower than the high-bandwidth NVLink [22] available within a multi-

GPU server, (b) a high degree of model parallelism can create small matrix multiplications (GEMMs),

potentially decreasing GPU utilization.

Pipeline (model) parallelism [125, 86, 127, 175, 99, 71], as introduced in the previous chapters

of this dissertation, is another technique to support the training of large models, where layers of a

model are striped over multiple GPUs. A batch is split into smaller microbatches, and execution is

pipelined across these microbatches. Layers can be assigned to workers in various ways, and various

schedules for the forward and backward passes of inputs can be used. The layer assignment and

scheduling strategy results in different performance tradeoffs. Regardless of schedule, to preserve

strict optimizer semantics, optimizer steps need to be synchronized across devices, leading to a

pipeline flush at the end of every batch, where microbatches are allowed to complete execution (and

no new microbatches are injected). As much as 50% of time can be spent flushing the pipeline

depending on the number of microbatches injected into the pipeline. The larger the ratio of number

of microbatches to the pipeline size, the smaller the time spent in the pipeline flush. Therefore, to

achieve high efficiency, a larger batch size is often necessary. In this chapter, we also introduce a

new pipeline schedule that improves efficiency at small batch sizes.

Users can thus train their large models using various techniques, each with different tradeoffs.

Moreover, these techniques can be combined. However, combining these techniques leads to non-

trivial interactions, which need to be reasoned through carefully for good performance. In this

chapter, we address the following question:

How should parallelism techniques be combined to maximize the training throughput of

large models given a batch size while retaining strict optimizer semantics?
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In particular, we show how to combine pipeline, tensor, and data parallelism, a technique we call

PTD-P, to train large language models with good computational performance (52% of peak device

throughput) on 1000s of GPUs, which is a much larger scale compared to the scales considered

in Chapters 2 and 3. Our method leverages the combination of pipeline parallelism across multi-

GPU servers, tensor parallelism within a multi-GPU server, and data parallelism, to practically train

models with a trillion parameters with graceful scaling in an optimized cluster environment with

high-bandwidth links between GPUs on the same server and across servers. We can use similar ideas

to train larger models as well, given more training resources. In our experiments, we demonstrate

close to linear scaling to 3072 A100 GPUs, with an achieved end-to-end training throughput of 163

teraFLOP/s per GPU (including communication, data processing, and optimization), and an aggre-

gate throughput of 502 petaFLOP/s, on a GPT model [45] with a trillion parameters using mixed

precision. This throughput facilitates practical training times: we estimate end-to-end training of

this model to take ∼ 3 months. We believe this is the fastest training throughput achieved for this

size of model: past systems [153, 125] cannot train such large models since they do not combine

pipeline and tensor parallelism. We also compared to ZeRO [140], and found that our approach

outperforms ZeRO-3 by 70% for models with 175 and 530 billion parameters due to less cross-node

communication. These models are too large to fit on a multi-GPU server.

Achieving this throughput at scale required innovation and careful engineering along multiple

axes: efficient kernel implementations that allowed most of the computation to be compute-bound

as opposed to memory-bound, smart partitioning of computation graphs over the devices to reduce

the number of bytes sent over network links while also limiting device idle periods, domain-specific

communication optimization, and fast hardware (state-of-the-art GPUs and high-bandwidth links

between GPUs on the same and different servers). We are hopeful that our open-sourced software

(available at https://github.com/nvidia/megatron-lm) will enable other groups to train large

NLP models efficiently at scale.

In addition, we studied the interaction between the various components affecting throughput,

both empirically and analytically when possible. Based on these studies, we offer the following

guiding principles on how to configure distributed training:

• Different forms of parallelism interact in non-trivial ways: the parallelization strategy has an

impact on the amount of communication, the compute efficiency with which kernels are exe-

cuted, as well as the idle time workers spend waiting for computation due to pipeline flushes

(pipeline bubbles). For example, in our experiments, we found that sub-optimal combinations

of tensor and pipeline model parallelism can lead to up to 2× lower throughput, even with

high-bandwidth network links between servers; tensor model parallelism is effective within

a multi-GPU server, but pipeline parallelism must be used for larger models. Moreover, the

combination of these parallelization strategies is necessary to train models with hundreds of

billions to a trillion parameters; these parallelization strategies in isolation are insufficient.

https://github.com/nvidia/megatron-lm
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• The schedule used for pipeline parallelism has an impact on the amount of communication,

the pipeline bubble size, and memory used to store activations. We propose a novel interleaved

schedule that can improve throughput by as much as 10% compared to previously-proposed

schedules [86, 127] with comparable memory footprint.

• Values of hyperparameters such as microbatch size have an impact on the memory footprint,

the arithmetic efficiency of kernels executed on the worker, and the pipeline bubble size. In our

experiments, the optimal value of the microbatch size is problem-dependent and can increase

throughput by 15%.

• At scale, distributed training is communication-intensive. When training a trillion-parameter

model on 3072 GPUs, our implementation used an effective bisection bandwidth of 892 GB/s

for pipeline-parallel communication, and 13 TB/s for data-parallel communication. Using

slower inter-node interconnects or more communication-intensive partitionings would hinder

scaling performance.

We should note that we do not automatically explore the search space of parallelization strate-

gies (such as FlexFlow [96], PipeDream [125], Tarnawski et al. [159], and DAPPLE [71]), but

instead suggest heuristics (in §4.3) that we found work well in practice. Automating this process is

interesting future work.

4.2 Modes of Parallelism

In this section, we discuss the parallelism techniques introduced in §2.2 in more detail. These

parallelism modes help facilitate the efficient training of large models that do not fit in the memory

of a single GPU at scale. In this chapter, we combine pipeline model parallelism and tensor model

parallelism (combination shown in Figure 4.2) with data parallelism. We call this PTD-P for short.
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4.2.1 Data Parallelism

With data parallelism [173, 109], each worker has a copy of the full model, the input dataset is

sharded, and workers aggregate their gradients periodically to ensure that all workers see a consis-

tent version of the weights. For large models which do not fit on a single worker, data parallelism

can be used on smaller model shards.

4.2.2 Pipeline (Model) Parallelism

With pipeline (model) parallelism1, the layers of a model are sharded across multiple devices. When

used on models with the same transformer block repeated, each device can be assigned an equal

number of transformer layers. In this chapter, we do not consider more asymmetric model archi-

tectures, where assignment of layers to pipeline stages is harder; we defer to Chapter 2 and related

work [96, 159] to solve this problem.

A batch is split into smaller microbatches; execution is then pipelined across microbatches.

Pipelining schemes need to ensure that inputs see consistent weight versions across forward and

backward passes for well-defined synchronous weight update semantics. Specifically, näıve pipelin-

ing can lead to an input seeing weight updates in the backward pass not seen in the forward pass.

To retain strict optimizer semantics exactly, we introduce periodic pipeline flushes so that opti-

mizer steps are synchronized across devices. At the start and end of every batch, devices are idle. We

call this idle time the pipeline bubble, and want to make it as small as possible. Asynchronous and

bounded staleness approaches such as PipeMare [175, 99], PipeDream (Chapter 2), and PipeDream-

2BW (Chapter 3) do away with flushes completely, but relax weight update semantics. We do not

consider the combination of such pipelining schemes with data and tensor model parallelism in this

chapter, and instead defer this to future work.

There are several possible ways of scheduling forward and backward microbatches across de-

vices; each approach offers different tradeoffs between pipeline bubble size, communication, and

memory footprint. We discuss two such approaches in this section.

Default Schedule

GPipe [86] proposes a schedule where the forward passes for all microbatches in a batch are first

executed, followed by backward passes for all microbatches (shown in Figure 4.3). We can quantify

the size of GPipe’s pipeline bubble (tpb). We denote the number of microbatches in a batch as m,

the number of pipeline stages (number of devices used for pipeline parallelism) as p, the ideal time

per iteration as tid (assuming ideal scaling), and the time to execute a single microbatch’s forward

and backward pass as tf and tb. In this schedule, the pipeline bubble consists of p − 1 forward

1We drop the “model” in “pipeline model parallelism” in most places for consistency with other chapters in this dissertation,
but we do want to note that pipeline parallelism is an augmented form of model parallelism.
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Figure 4.3: GPipe pipeline schedule with forward passes (blue) for all microbatches (represented
by numbers) followed by backward passes (green). The gray area represents the pipeline bubble.
For simplicity, we assume that the backward pass takes twice as long as the forward pass. The
efficiency of the pipeline schedule does not depend on this factor. Each batch in this example
consists of 8 microbatches, and the numbers in each blue or green box are unique identifiers given
to the corresponding microbatch (in particular, the first batch consists of microbatches 1− 8, and so
on). The optimizer is stepped and weight parameters updated at the pipeline flush to ensure strict
optimizer semantics, leading to idle devices and a pipeline bubble.

passes at the start of a batch, and p− 1 backward passes at the end. The total amount of time spent

in the pipeline bubble is then tpb = (p − 1) · (tf + tb). The ideal processing time for the batch is

tid = m · (tf + tb). Therefore, the fraction of ideal computation time spent in the pipeline bubble is:

Bubble time fraction (pipeline bubble size) =
tpb
tid

=
p− 1

m
.

For the bubble time fraction to be small, we thus need m � p. However, for such large m, this

approach has a high memory footprint as it requires stashed intermediate activations (or just input

activations for each pipeline stage when using activation recomputation) to be kept in memory for

all m microbatches through the lifetime of a training iteration.

Instead, we use the PipeDream-Flush schedule from the previous chapter. In this schedule, we

first enter a warm-up phase where workers perform differing numbers of forward passes as shown

in Figure 4.4 (top). This schedule limits the number of in-flight microbatches (the number of micro-

batches for which the backward pass is outstanding and activations need to be maintained) to the

depth of the pipeline, instead of the number of microbatches in a batch. After the warm-up phase,

each worker then enters a steady state, where workers perform one forward pass followed by one

backward pass (1F1B for short). Finally, at the end of a batch, we complete backward passes for

all remaining in-flight microbatches. The time spent in the bubble is the same for this new sched-

ule, but the number of outstanding forward passes is at most the number of pipeline stages for the

PipeDream-Flush schedule. As a result, this schedule requires activations to be stashed for p or fewer

microbatches (compared to m microbatches for the GPipe schedule). Consequently, when m � p,
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Figure 4.4: Default and interleaved 1F1B pipeline schedules. The top figure shows the default non-
interleaved 1F1B schedule. The bottom figure shows the interleaved 1F1B schedule, where each
device is assigned multiple chunks (in this case, 2). Dark colors show the first chunk and light colors
show the second chunk. The size of the pipeline bubble is smaller (the pipeline flush happens sooner
in the interleaved timeline).

PipeDream-Flush is much more memory-efficient than GPipe.

Schedule with Interleaved Stages

To reduce the size of the pipeline bubble, each device can perform computation for multiple subsets

of layers (called a model chunk), instead of a single contiguous set of layers. For example, if each

device had 4 layers before (i.e., device 1 had layers 1− 4, device 2 had layers 5− 8, and so on), we

could have each device perform computation for two model chunks (each with 2 layers), i.e., device

1 has layers 1, 2, 9, 10; device 2 has layers 3, 4, 11, 12; and so on. With this scheme, each device in

the pipeline is assigned multiple pipeline stages (each pipeline stage has less computation compared

to before).

As before, we can use an “all-forward, all-backward” version of this schedule, but this has a high

memory footprint (proportional to m). Instead, we developed an interleaved schedule that adapts

the more memory-efficient 1F1B schedule from before. This new schedule is shown in Figure 4.4,

and requires the number of microbatches in a batch to be an integer multiple of the degree of

pipeline parallelism (number of devices in the pipeline). For example, with 4 devices, the number

of microbatches in a batch must be a multiple of 4.

As shown in Figure 4.4, the pipeline flush for the same batch size happens sooner in the new

schedule. If each device has v stages (or model chunks), then the forward and backward time for

a microbatch for each stage or chunk will now be tf/v and tb/v. The pipeline bubble time thus
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reduces to tint.
pb =

(p−1)·(tf+tb)
v , and the bubble time fraction is then:

Bubble time fraction (pipeline bubble size) =
tint.
pb

tid
=

1

v
· p− 1

m
.

This means that the new schedule reduces the bubble time by v. This reduced pipeline bubble

size, however, does not come for free: this schedule requires extra communication. Quantitatively,

the amount of communication also increases by v. In the next section, we discuss how we can utilize

the 8 InfiniBand networking cards in a multi-GPU server (e.g., a DGX A100 node) to reduce the

impact of this extra communication.

4.2.3 Tensor Model Parallelism

With tensor model parallelism, individual layers of the model are partitioned over multiple de-

vices. We use the particular partitioning strategy used by Megatron [153] for transformer layers,

the bedrock of language models. We can apply similar ideas to other types of models, like CNNs, as

well. We briefly outline this strategy, illustrated in Figure 4.5, below.

A transformer layer consists of a self-attention block followed by a two-layer multi-layer percep-

tron (MLP). Further details of the transformer layer can be found in Vaswani et al [164].

The MLP block consists of two GEMMs and a GeLU non-linearity:

Y = GeLU(XA), Z = Dropout(Y B).

We can split A along its columns A = [A1, A2]. This partitioning allows the GeLU non-linearity to be

independently applied to the output of each partitioned GEMM:

[Y1, Y2] = [GeLU(XA1),GeLU(XA2)].

This is advantageous as it removes the need for synchronization (needed if A is split along its rows

since GeLU is non-linear).

The rows of the second weight matrix B can then be split along its rows to remove the need for

any communication between the GEMMs (shown in Figure 4.5a), as shown below:

B =

[
B1

B2

]
, Y = [Y1, Y2].

The output of the second GEMM is then reduced across the GPUs before the dropout layer.

We exploit the inherent parallelism in the multi-head attention operation to partition the self-

attention block (shown in Figure 4.5b). The key (K), query (Q), and value (V ) matrices can be

partitioned in a column-parallel fashion. The output linear layer can then directly operate on the
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Figure 4.5: Blocks of transformer model partitioned with tensor model parallelism (figures borrowed
from Megatron [153]). f and g are conjugate. f is the identity operator in the forward pass and
all-reduce in the backward pass, while g is the reverse.

partitioned output of the attention operation (weight matrix partitioned across rows).

This approach splits GEMMs in the MLP and self-attention blocks across GPUs while requiring

only two all-reduce operations in the forward pass (g operator) and two all-reduces in the backward

pass (f operator). We implemented f and g in a few lines of code.

4.3 Performance Analysis of Parallelization Configurations

In this section, we consider the performance implications of combining pipeline and tensor model

parallelism with data parallelism. Given a fixed budget of GPUs and batch size, one can use different

degrees of the parallelism types in PTD-P to train models; each dimension exposes tradeoffs between

memory footprint, device utilization, and amount of communication.

We discuss these tradeoffs in the rest of this section, and then show empirical results in §4.5.4.
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We present analytical models where relevant for the pipeline bubble size. We qualitatively describe

how communication time behaves and present cost models for amount of communication; how-

ever, we do not present direct cost models for communication time, which is harder to model for a

hierarchical network topology where interconnects between GPUs on the same server have higher

bandwidth than interconnects between servers. To the best of our knowledge, this is the first work

to analyze the performance interactions of these parallelization dimensions.

4.3.1 Notation

We use the following notation in this section:

• (p, t, d): Parallelization dimensions. p for the pipeline-model-parallel size, t for the tensor-

model-parallel size, and d for the data-parallel size.

• n: Number of GPUs. We require p · t · d = n.

• B: Global batch size (provided as input).

• b: Microbatch size.

• m = 1
b ·

B
d : Number of microbatches in a batch per pipeline.

4.3.2 Tensor and Pipeline Model Parallelism

Tensor and pipeline model parallelism can both be used to partition a model’s parameters over

multiple GPUs. As stated earlier, using pipeline parallelism with periodic flushes results in a pipeline

bubble of size (p− 1)/m. Let us assume that d = 1 (data-parallel size); consequently, t · p = n. The

pipeline bubble size in terms of t is:
p− 1

m
=
n/t− 1

m
.

As t increases, the pipeline bubble thus decreases for fixed B, b, and d (m = B/(b · d) is fixed).

The amount of communication performed between different GPUs is also affected by the values

of p and t. Pipeline parallelism features cheaper point-to-point communication. Tensor model par-

allelism, on the other hand, uses all-reduce communication (two all-reduce operations each in the

forward and backward pass, see §4.2.3). With pipeline parallelism, the total amount of communica-

tion that needs to be performed between every pair of consecutive devices (for either the forward or

backward pass) per microbatch is bsh, where s is the sequence length and h is the hidden size. With

tensor model parallelism, tensors of total size bsh need to be all-reduced among t model replicas

twice each in the forward and backward pass for each layer, leading to a total communication of

8bsh
(
t−1
t

)
per layer per device for each microbatch. Each device typically has multiple layers; the

total amount of tensor-parallel-communication is then lstage ·
(
8bsh

(
t−1
t

))
, where lstage is the number

of layers in a pipeline stage.
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Figure 4.6: Fraction of time spent in a pipeline flush (pipeline bubble size) versus data-parallel size
(d), for different numbers of GPUs (n) and ratio of batch size to microbatch size (b′ = B/b).

Consequently, we see that tensor model parallelism increases the amount of communication

between devices. Thus, when t is larger than the number of GPUs in a single node, the overhead of

performing tensor model parallelism across slower inter-node links can be impractical. We see these

results empirically in §4.5.4.

Takeaway #1: When considering different forms of model parallelism, tensor model parallelism

should generally be used up to degree g when using g-GPU servers, and then pipeline parallelism

can be used to scale up to larger models across servers.

4.3.3 Data and Model Parallelism

We also want to consider the interaction between data parallelism and the two types of model

parallelism. In this section, we consider these interactions independently for simplicity.

Pipeline Parallelism

Let t = 1 (tensor-model-parallel size). The number of microbatches per pipeline is m = B/(d · b) =
b′/d, where b′ := B/b. With total number of GPUs n, the number of pipeline stages is p = n/(t · d) =
n/d. The pipeline bubble size is:

p− 1

m
=
n/d− 1

b′/d
=
n− d
b′

.

As d becomes larger, n−d becomes smaller, and thus the pipeline bubble becomes smaller. Figure 4.6

shows the behavior of the pipeline bubble size for various values of d, n, and b′. It might not be

possible to increase d all the way to n for all models, since a model’s full training memory footprint

might be larger than the memory capacity of a single accelerator.
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Figure 4.7: Per-GPU throughput versus microbatch size for a GPT model with a billion parameters
(128 attention heads, hidden size of 4096, 4 transformer layers).

Overall throughput will thus increase if the all-reduce communication needed for data paral-

lelism does not drastically increase with higher d, which should hold since the communication time

for a ring-based implementation scales with d−1
d = 1− 1

d .

We can also analyze the impact of increasing the batch size B. For a given parallel configuration,

as the batch size B increases, b′ = B/b increases, (n − d)/b′ decreases, consequently increasing

throughput. All-reduce communication required by data parallelism also becomes more infrequent,

further increasing throughput.

Data and Tensor Model Parallelism

With tensor model parallelism, all-reduce communication needs to be performed for every micro-

batch. This can be expensive across multi-GPU servers. On the other hand, data parallelism only

needs to perform expensive all-reduce communication once per batch. Moreover, with tensor model

parallelism, each model-parallel rank performs a subset of the computation in each model layer, and

thus for insufficiently-large layers, modern GPUs might not perform these sub-matrix computations

with peak efficiency.

Takeaway #2: When using data and model parallelism, a total model-parallel size of M = t · p
should be used so that the model’s parameters and intermediate metadata fit in GPU memory;

data parallelism can be used to scale up training to more GPUs.

4.3.4 Microbatch Size

The choice of the microbatch size b also affects model-training throughput. For example, we see

in Figure 4.7 that per-GPU throughput increases by up to 1.3× with a larger microbatch size on a

single GPU. We now want to determine the optimal microbatch size b given a parallel configuration

(p, t, d) and batch size B. The amount of data-parallel communication will be the same regardless

of the microbatch size. Given functions tf (b) and tb(b) that map the microbatch size to the forward
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Figure 4.8: Behavior of normalized estimated throughput (time computed as t = (b′/b+ p− 1) ·
(tf (b) + tb(b))) with respect to the microbatch size b for the same GPT model from Figure 4.7.

and backward computation times for a single microbatch, the total time spent computing a batch,

ignoring communication cost, is (as before, define b′ as B/d):

(b′/b+ p− 1) · (tf (b) + tb(b)) . (4.1)

The microbatch size thus affects both the arithmetic intensity of operations as well as the pipeline

bubble size (by affecting m). Figure 4.8 shows estimated throughput (equation (4.1) used to esti-

mate processing time) for a GPT model with a billion parameters and (p, t) = (8, 8). The optimal b

for both batch sizes is 4.

Takeaway #3: The optimal microbatch size b depends on the throughput and memory footprint

characteristics of the model, as well as the pipeline depth p, data-parallel size d, and batch size B.

4.3.5 Activation Recomputation

Activation recomputation [86, 53, 77, 90] is an optional technique that trades off an increase in the

number of compute operations performed for additional memory footprint, by running the forward

pass a second time just before the backward pass (and stashing only the input activations for a

given pipeline stage, as opposed to the entire set of intermediate activations, which is much larger).

Activation recomputation is required to train reasonably large models with pipeline parallelism to

keep memory footprint acceptably low. Chapter 3 briefly looked at the performance ramifications of

activation recomputation.

The number of activation checkpoints does not impact throughput, but impacts memory foot-

print. Let Ainput be the size of the input activations of a layer, and Aintermediate be the size of interme-

diate activations per layer. If a model stage has l layers, and if c is the number of checkpoints, the

total memory footprint is going to be c ·Ainput + l/c ·Aintermediate. The minimum value of this function

is obtained when c =
√
l ·
(
Aintermediate/Ainput

)
. In practice, we measure Aintermediate empirically. For

most cases, checkpointing every 1 or 2 transformer layers is optimal.
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Figure 4.9: Scatter/gather communication optimization. Light blue blocks are layers in the first
pipeline stage, and dark blue blocks are layers in the second pipeline stage. Without the scatter/-
gather optimization, the same tensor is sent redundantly over inter-node InfiniBand links. Instead,
at the sender, we can scatter the tensor into smaller chunks, reducing the sizes of tensors sent over
InfiniBand links. The final tensor can then be rematerialized at the receiver using a gather operation.

Other techniques such as activation partitioning [140] can also be used in conjunction with

tensor model parallelsim to reduce the memory footprint due to activations further.

4.4 Implementation

We implemented PTD-P as an extension to the Megatron-LM codebase. Our implementation is

built using PyTorch [134]. We use NCCL [18] for communication between devices. To obtain

good performance, we implemented optimizations targeting both communication and computation,

which we outline below.

4.4.1 Communication Optimizations

When using pipeline parallelism, we want to send and receive tensors in the forward and backward

direction in parallel. Each DGX A100 is equipped with 8 InfiniBand (IB) networking cards. Unfor-

tunately, sends and receives are point-to-point, and only happen between a pair of GPUs on two

servers, making it hard to leverage all 8 cards for a single communication call within the pipeline.

However, we can leverage the fact that we use both tensor model parallelism and pipeline paral-

lelism to reduce the overhead of cross-node communication. In particular, we note that the output of

each transformer layer is replicated (after g in MLP block, see Figure 4.5a) across the tensor-parallel

ranks. As a result, ranks in two consecutive pipeline stages that are performing tensor model paral-

lelism send and receive the exact same set of tensors (Figure 4.9a).

For large enough models, we use a tensor-model-parallel size of 8. This means we are sending

the same set of tensors 8 times between corresponding GPUs on adjacent multi-GPU servers. To

reduce this redundancy, we can instead split the tensor on the send side into equal-sized chunks,

and then only send one chunk to the corresponding rank on the next node using the rank’s own

InfiniBand card (e.g., rank 1 sends to rank 3 and rank 2 sends to rank 4 in Figure 4.9). With 8
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tensor-model-parallel ranks, each chunk would be one-eighth smaller. Then, on the receive side, we

can perform an all-gather over NVLink, which is much faster than the InfiniBand interconnect, to

re-materialize the full tensor. This is shown in Figure 4.9b. We call this the scatter/gather communi-

cation optimization. This optimization helps better leverage the multiple IB cards on the DGX A100

servers, and makes more communication-intensive schedules such as the interleaved one feasible.

Quantitatively, with the scatter-gather communication optimization, the total amount of com-

munication that needs to be performed between every pair of consecutive stages is reduced to bsh
t ,

where t is the tensor-model-parallel size, s is the sequence length, and h is the hidden size (t = 8 in

our experiments).

4.4.2 Computation Optimizations

We implemented three model-specific optimizations to the computation graph to attain high per-

formance. First, we changed the data layout in the transformer layer to avoid memory-intensive

transpose operations, and to enable the use of strided batched GEMM kernels. Specifically, we

changed the data layout from [b, s, a, h] to [s, b, a, h], where b, s, a, and h are batch, sequence,

attention-head, and hidden-size dimensions, respectively. Second, we generated fused kernels for

a sequence of element-wise operations (bias + GeLU and bias + dropout + add) using PyTorch

JIT [25]. Third, we created two custom kernels to enable the fusion of scale, mask, and softmax

(reduction) operations: one to support general masking (used in models such as BERT) and another

to support implicit causal masking (used in auto-regressive models such as GPT). We quantify the

effect of these optimizations in the next section.

4.5 Evaluation

In this section, we seek to answer the following questions:

• How well does PTD-P perform? Does it result in realistic end-to-end training times?

• How well does pipeline parallelism scale for a given model and batch size? How much impact

does the interleaved schedule have on performance?

• How do different parallelization dimensions interact with each other? What is the impact of

hyperparameters such as microbatch size?

• What is the impact of the scatter-gather communication optimization? What types of limits do

we put on hardware when running training iterations at scale?

All of our results are run with mixed precision on the Selene supercomputer [21]. Each cluster

node has 8 NVIDIA 80-GB A100 GPUs [17], connected to each other by NVLink and NVSwitch [22].
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Each node has eight NVIDIA Mellanox 200Gbps HDR Infiniband HCAs for application communica-

tion, with an additional two HCAs per node for dedicated storage. The nodes are connected in a

three-level (leaf, spine, core) fat-tree topology with 850 switches. This topology allows efficient

all-reduce communication (dominant communication pattern in deep learning training). The clus-

ter uses an all-NVME shared parallel filesystem for high-performance data access and storage. The

peak device throughput of an A100 GPU with 16-bit precision is 312 teraFLOP/s. For most of our

results, we report throughput per GPU. Aggregate throughput can be computed by multiplying with

the number of GPUs used.

For our experiments, we use GPT models of appropriate sizes. In particular, for any given mi-

crobenchmark, the model needs to fit on the number of model-parallel GPUs used in the experiment.

We use standard model architectures such as GPT-3 [45] when appropriate.

4.5.1 End-to-End Performance
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We consider the end-to-end performance of our system on GPT models ranging from a billion to

a trillion parameters, using tensor, pipeline, and data parallelism (degrees picked using heuristics

described in §4.3). In particular, we use the interleaved pipeline schedule with the scatter/gather

optimization enabled.

We consider a language model with l transformer layers, hidden size h, sequence length s, vo-

cabulary size V , and training batch size B.

A Am×k ×Xk×n matrix multiplication requires 2m× k× n FLOPs (factor of 2 needed to account

for multiplies and adds).

A transformer layer consists of an attention block followed by a 2-layer feed-forward network.

For the attention block, the main FLOP contributors are the key, query, and value transformation

(6Bsh2 operations), attention matrix computation (2Bs2h operations), attention over values (2Bs2h

operations), and post-attention linear projection (2Bsh2 operations). The feed-forward network

increases the hidden size to 4h and then reduces it back to h; this requires 16Bsh2 FLOPs. Summing

these together, each transformer layer results in 24Bsh2 + 4Bs2h FLOPs for the forward pass. The

backward pass requires double the number of FLOPs since we need to calculate the gradients with

respect to both input and weight tensors. In addition, we are using activation recomputation, which

requires an additional forward pass before the backward pass. As a result, the total number of FLOPs

per transformer layer is 4×
(
24Bsh2 + 4Bs2h

)
= 96Bsh2

(
1 +

s

6h

)
.

The other main contributor to the FLOP count is the logit layer in the language model head,

which transforms features of dimension h to the vocabulary dimension V . The required FLOPs for

this operation is 2BshV in the forward pass and 4BshV in the backward pass, resulting in 6BshV

FLOPs in total.

For a transformer model with l transformer layers, the number of floating-point operations is:

F = 96Bslh2
(
1 +

s

6h
+

V

16lh

)
. (4.2)

This is a lower bound for the true FLOP count but should be close to the actual value. We count

a FLOP as a floating-point operation regardless of precision. We also note that equation 4.2 assumes

activation recomputation and takes into account the floating-point operations associated with the

extra forward pass.

The number of parameters in a model, P , can be computed as:

P = 12lh2
(
1 +

13

12h
+
V + s

12lh

)
. (4.3)

All models use a vocabulary size (V ) of 51,200 (multiple of 1024) and a sequence length (s) of

2048. As the model size increases, we also increase the number of GPUs (n).

Table 4.1 shows the model configurations along with the achieved FLOP/s (both per GPU and



CHAPTER 4. PTD-P PARALLELISM: TRAINING MODELS ON THOUSANDS OF GPUS 82

Scheme
Number of 
parameters 

(billion)

Model- 
parallel 

size

Batch 
size

Number 
of GPUs

Microbatch 
size

Achieved 
teraFlOP/s 

per GPU

Training time 
for 300B 

tokens (days)

ZeRO-3 
without 
Model 

Parallelism

174.6 1 1536
384 4 144 90
768 2 88 74

1536 1 44 74

529.6 1
2560* 640 4 138 169

2240
1120 2 98 137
2240 1 48 140

PTD 
Parallelism

174.6 96 1536
384 1 153 84
768 1 149 43

1536 1 141 23

529.6 280 2240
560 1 171 156

1120 1 167 80
2240 1 159 42

Table 4.2: Comparison of PTD Parallelism to ZeRO-3 (without model paralllelism). The 530-billion-
parameter GPT model did not fit on 560 GPUs when using a microbatch size of 4 with ZeRO-3, so
we increased the number of GPUs used to 640 and global batch size to 2560 to provide a throughput
estimate (relevant row marked in table with a *).

aggregate over all GPUs). We see super-linear scaling to 3072 A100 GPUs (384 DGX A100 nodes),

since GPU utilization improves as the models get larger (larger matrix multiplications) without sig-

nificant increase in the communication time relative to computation time. Note that throughput

is measured for end-to-end training, i.e., includes all operations including data loading, optimizer

steps, communication, and logging. We achieve 52% of peak device throughput for the largest

model, and 44% of peak device throughput for the smallest model.

Training Time Estimates. Given these throughputs, we can estimate the total amount of time

needed for end-to-end training on T tokens. Training requires I = T/ (B · s) iterations. Using the

value of F from equation 4.2 and empirical end-to-end throughputs from Table 4.1 (X), we can

estimate total training time. We note that for the configurations in Table 4.1, we have 6h � s,

16lh� (V + s), and 12lh� V . Combining these observations with equations 4.3 and 4.2:

End-to-end training time ≈ 8TP

nX
. (4.4)

Let us consider the GPT-3 model with P =175 billion parameters as an example. This model was

trained on T = 300 billion tokens. On n = 1024 A100 GPUs using batch-size 1536, we achieve

X = 140 teraFLOP/s per GPU. As a result, the time required to train this model is 34 days. For the

1 trillion parameter model, we assume that 450 billion tokens are needed for end-to-end training.

With 3072 A100 GPUs, we can achieve a per-GPU throughput of 163 teraFLOP/s, and training time

of 84 days. We believe these training times (using a reasonable number of GPUs) are practical.
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Figure 4.10: Throughput per GPU of PTD-P and ZeRO-3 for two different GPT models (the 175B
GPT-3 model is shown with dotted lines, and the 530B model is shown with solid lines). Global
batch sizes are fixed and ZeRO-3 is used without any model parallelism.

4.5.2 Comparison to ZeRO-3

We compare PTD-P to ZeRO-3 [140, 141] in Table 4.2 and Figure 4.10 for the standard GPT-3

model architecture, as well as the 530-billion-parameter model from Table 4.1. The results provide

a point of comparison to a method that does not use model parallelism. We integrated ZeRO into

our codebase using the DeepSpeed Python library [6]. We keep the global batch size the same as we

increase the number of GPUs. With fewer GPUs and a microbatch size of 4, PTD-P results in 6% and

24% higher throughput for the 175- and 530-billion-parameter models respectively. As we increase

the number of GPUs, PTD-P scales more gracefully than ZeRO-3 in isolation (see Figure 4.10). For

example, by doubling the number of GPUs (keeping the batch size the same), PTD-P outperforms

ZeRO-3 by 70% for both models due to less cross-node communication. We note that we have only

considered ZeRO-3 without tensor parallelism. ZeRO-3 can be combined with model parallelism to

potentially improve its scaling behavior.

4.5.3 Pipeline Parallelism

We now evaluate the weak-scaling performance of pipeline parallelism in isolation, and also compare

the performance of the non-interleaved schedule to the interleaved schedule.

Weak Scaling

We evaluate the scaling of the default non-interleaved pipeline-parallel schedule using a weak scal-

ing setup, a GPT model with 128 attention heads and a hidden size of 20480, and a microbatch

size of 1. As we increase the number of pipeline stages, we also increase the size of the model by

proportionally increasing the number of layers in the model, e.g., with a pipeline-parallel size of 1,

we use a model with 3 transformer layers and 15 billion parameters, and with a pipeline-parallel
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Figure 4.11: Throughput per GPU of pipeline parallelism using two different batch sizes in a weak-
scaling experiment setup (model size increases with the pipeline-parallel size).
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Figure 4.12: Throughput per GPU of interleaved and non-interleaved schedules for a GPT model
(175 billion parameters) on 96 GPUs.

size of 8, we use a model with 24 transformer layers and 121 billion parameters. We use a tensor-

parallel size of 8 for all configurations, and vary the total number of A100 GPUs used from 8 to 64.

Figure 4.11 shows throughput per GPU for two different batch sizes to illustrate the impact of the

pipeline bubble, which behaves as p−1
m (§4.2.2). As expected, the higher batch size scales better

since the pipeline bubble is amortized over more microbatches.

Interleaved versus Non-Interleaved Schedule

Figure 4.12 shows the per-GPU-throughput for interleaved and non-interleaved schedules on the

GPT-3 [45] model with 175 billion parameters (96 layers, 96 attention heads, hidden size of 12288).

The interleaved schedule with the scatter/gather communication optimization has higher computa-

tional performance than the non-interleaved (default) schedule. This gap closes as the batch size

increases due to two reasons:

1. As the batch size increases, the bubble size in the default schedule decreases.

2. The amount of point-to-point communication within the pipeline is proportional to the batch

size, and consequently the non-interleaved schedule catches up as the batch size increases (the
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Figure 4.13: Throughput per GPU of various parallel configurations that combine pipeline and tensor
model parallelism using a GPT model with 162.2 billion parameters and 64 A100 GPUs.

interleaved schedule features more communication per sample).

Without the scatter/gather optimization, the default schedule performs better than the inter-

leaved schedule at larger batch sizes (not shown).

4.5.4 Comparison of Parallel Configurations

In this sub-section, we show the various tradeoffs associated with combining different parallelization

dimensions. In particular, we show the performance for parallel configurations using the same

number of GPUs for a given model and multiple batch sizes.

Tensor versus Pipeline Parallelism

We evaluate the impact of pipeline and tensor model parallelism on performance for a given model

and batch size. The empirical results in Figure 4.13 show the importance of using both tensor and

pipeline model parallelism in conjunction to train a 161-billion-parameter GPT model (32 trans-

former layers to support pipeline-parallel size of 32, 128 attention heads, hidden size of 20480)

with low communication overhead and high compute resource utilization. We observe that tensor

model parallelism is best within a node (DGX A100 server) due to its multiple expensive all-reduce

communication calls. Pipeline parallelism, on the other hand, features much less communication.

However, with pipeline parallelism, significant time can be spent in the pipeline bubble: the total

number of pipeline stages should thus be limited so that the number of microbatches in the pipeline

is a reasonable multiple of the number of pipeline stages. Consequently, we see peak performance

when the tensor-parallel size is equal to the number of GPUs in a single node (8 with DGX A100

nodes). This result indicates that neither tensor model parallelism (used by Megatron [153]) nor

pipeline parallelism (used by PipeDream [127] and others) in isolation can match the performance

of using both techniques in conjunction.
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Figure 4.14: Throughput per GPU of various parallel configurations that combine data and pipeline
parallelism using a GPT model with 5.9 billion parameters, three different batch sizes, microbatch
size of 1, and 64 A100 GPUs.
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Figure 4.15: Throughput per GPU of various parallel configurations that combine data and ten-
sor model parallelism using a GPT model with 5.9 billion parameters, three different batch sizes,
microbatch size of 1, and 64 A100 GPUs.

Pipeline versus Data Parallelism

We evaluate the impact of data and pipeline parallelism on performance for a GPT model with 5.9

billion parameters (32 transformer layers, 32 attention heads, hidden size of 3840) in Figure 4.14.

We use a smaller model than before since we want to show performance for models that fit when

the model-parallel size is only 2. For simplicity, we keep the microbatch size equal to 1 in these

experiments. We see that for each batch size, the throughput decreases as the pipeline-parallel size

increases, matching our analytical model from §4.3.3. Pipeline parallelism should be used primarily

to support the training of large models that do not fit on a single worker, and data parallelism should

be used to scale up training.

Tensor versus Data Parallelism

We also evaluate the impact of data and tensor model parallelism on performance for the same

GPT model with 5.9 billion parameters in Figure 4.15 (smaller model used for same reason as
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Figure 4.16: Throughput per GPU for different microbatch sizes on a GPT model with 91 billion
parameters, for two different batch sizes using 64 A100 GPUs ((t, p) is (8, 8)).

above). As before, we keep the microbatch size equal to 1 initially. With larger batch sizes and

a microbatch size of 1, data-parallel communication is infrequent; the all-to-all communication

required in tensor model parallelism needs to be performed for every microbatch in a batch. This all-

to-all communication with tensor model parallelism dominates end-to-end training time, especially

when communication needs to be performed across multi-GPU nodes. Additionally, as the tensor-

model-parallel size increases, we perform smaller matrix multiplications on every GPU, decreasing

utilization on each GPU.

We should note that although data parallelism can lead to efficient scaling, we cannot use data

parallelism in isolation for very large models with a limited training batch size because of:

• Insufficient memory capacity.

• Scaling limitations of data parallelism (e.g., GPT-3 was trained to convergence with a batch size

of 1536. Data parallelism thus supports parallelization to only 1536 GPUs; however, roughly

10, 000 GPUs were used to train this model in a reasonable amount of time).

4.5.5 Microbatch Size

We evaluate the impact of the microbatch size on the performance of parallel configurations that

combine pipeline and tensor model parallelism in Figure 4.16 for a model with 91 billion parameters

((t, p) is (8, 8)). We see that the best microbatch size is 2 for this model; the optimal microbatch

size is different for other models (not shown in Figure) and model-dependent. For a given batch size,

increasing the microbatch size decreases the number of microbatches in the pipeline (m), leading to

a larger pipeline bubble; however, increasing the microbatch size can also improve GPU utilization

by increasing the arithmetic intensity of executed kernels. These two factors are at odds with each

other, which makes the choice of optimal microbatch size challenging. Our analytical model from
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Figure 4.17: Throughput (in sequences per second) with and without activation recomputation for
a GPT model with 145 billion parameters using 128 A100 GPUs ((t, p) is (8, 16)).
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Figure 4.18: Throughput per GPU with and without the scatter/gather optimization for a GPT model
with 175 billion parameters using 96 A100 GPUs and the interleaved schedule.

§4.3.3 reasonably approximates true performance, and can be used as a proxy to determine how to

pick this hyperparameter value for various models and training configurations.

4.5.6 Activation Recomputation

Figure 4.17 shows throughput with and without activation recomputation for a GPT model with 145

billion parameters (80 transformer layers, 96 attention heads, hidden size of 12288) using 128 A100

GPUs, (t, p) = (8, 16), and a range of batch sizes. For small batch sizes, activation recomputation

leads to up to 33% lower throughput (in sequences per second) due to the extra forward pass that

needs to be executed during the backward pass. However, activation recomputation is needed to

support larger batch sizes. Throughput at large batch sizes with activation recomputation is up to

2× higher than the best throughput achieved without activation recomputation (for a smaller batch

size) due to a smaller pipeline bubble.
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4.5.7 Scatter-Gather Communication Optimization

Figure 4.18 shows per-GPU-throughput with and without (unoptimized) the scatter/gather commu-

nication optimization for the GPT-3 model with 175 billion parameters. We see an improvement of

up to 11% in throughput for communication-intensive schedules (large batch size with interleaving)

by reducing the amount of communication over cross-node links.

4.5.8 Fused Operators

We also evaluate the performance impact of operator fusion described in §4.4.2. For the GPT-3 model

(175 billion parameters), throughput increased by 19% with fusion (113 teraFLOP/s per GPU to 135

teraFLOP/s per GPU). For the larger GPT model with 530 billion parameters (model configuration

in Figure 4.1), throughput increased by 11% (133 teraFLOP/s per GPU to 148 teraFLOP/s per GPU).

4.5.9 Inter-Node Communication Bandwidth

Our strong results are a byproduct of using an optimized software and hardware stack together. In

particular, we take advantage of the high-bandwidth communication links between GPUs on the

same server and across servers. On the trillion-parameter model with 3072 GPUs, we observed that

the effective bisection bandwidth of point-to-point communication among pipeline stages is 892

GB/s, while the effective bisection bandwidth of all-reduce operations among data-parallel replicas

is 12.9 TB/s. A less-optimized partitioning of operators across devices would lead to more inter-node

communication, hampering scaling performance.

4.5.10 Checkpoint Loading and Saving

An important practical consideration for the training of large models is loading and saving model

checkpoints, which are especially large for the models considered in this evaluation. For example,

the trillion-parameter model has a checkpoint of size 13.8 terabytes. The initial load of checkpoints

for the trillion-parameter model by all 384 nodes (3072 GPUs) reaches a peak read bandwidth of

1TB/s, the maximum read throughput possible from the parallel filesystem. Checkpoint saves reach

40% of peak write bandwidth (273 GB/s).

4.6 Related Work

In this section, we discuss other techniques to train models at scale.

Parallelism for Large Models. Pipeline model parallelism is a common technique used to train

large models. Pipeline parallelism comes in a few flavors: the mode discussed in this chapter uses
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flushes to ensure strict optimizer semantics. TeraPipe [110] exposes fine-grained pipeline paral-

lelism across tokens in a single training sequence for auto-regressive models like GPT. PipeTrans-

former [82] elastically adjusts the degree of pipelining and data parallelism by freezing layers

with “stable” weights, and instead dedicates resources to train the remaining “active” layers. Het-

Pipe [133] uses a combination of pipeline and data parallelism on a set of heterogeneous acceler-

ators. Pipeline parallelism can also be implemented with relaxed semantics: PipeDream-2BW [127]

maintains two weight versions and guarantees 1-stale weight updates without expensive flushes,

while PipeMare [175] and Kosson et al. [99] use asynchoronous pipeline parallelism. These tech-

niques have improved throughput compared to the techniques with pipeline flushes considered in

this chapter, but potentially at the cost of convergence rate or final accuracy. Moreover, pipeline

parallelism in isolation can still only scale to a number of devices equal to the number of layers in

the model, which is limiting for certain model architectures.

PipeDream [125] combined pipeline parallelism and data parallelism in a principled way to

reduce cross-device communication. DeepSpeed [5] combined pipeline parallelism with tensor and

data parallelism to train models with up to a trillion parameters, but with lower throughput than

what was shown in this chapter (52% vs. 36% of peak) for a few reasons: operator fusion to

keep most of the operator graph compute-bound, a more-efficient pipeline parallelism schedule to

minimize the pipeline bubble size, fast hardware (A100 vs. V100 GPUs and high-bandwidth links

between GPUs on the same and different servers), and scaling to more GPUs. We want to emphasize

that this higher throughput makes estimated training times much more practical (about 3 months);

an aggregate throughput of 37.6 petaFLOP/s would take about 40 months to train an equivalently-

sized model. PTD-P can be used to scale to larger models as well, but would need more GPUs to

keep training time practical.

Mesh-TensorFlow [152] proposes a language for easily specifying parallelization strategies that

combine data and model parallelism. Switch Transformers [72] used Mesh-Tensorflow to train a

sparsely activated expert-based model with 1.6 trillion parameters, with improved pre-training speed

over the T5-11B model [138].

Sharded Data Parallelism. As part of performance optimizations for MLPerf 0.6 [117], sharded

data parallelism [103, 174], where optimizer state is sharded over data-parallel workers, was in-

troduced. This method has two advantages: (a) it does not introduce extra communication over

vanilla data parallelism, and (b) it divides the optimizer’s computation and memory cost across the

data-parallel partitions. ZeRO [140, 141] extends this idea: weight parameters and gradients are

sharded across data-parallel workers as well, and workers fetch relevant state from their “owning”

workers before performing computations. This adds additional communication, which can be par-

tially hidden by carefully overlapping computation and communication. However, this can become
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harder if tensor parallelism is not used or the batch size is not large enough to hide the extra com-

munication overhead (Figure 4.10). ZeRO-Infinity [141] uses NVMe to efficiently swap parameters,

enabling the training of very large models on a small number of GPUs. We note that using a small

number of GPUs for training a very large model results in unrealistic training times (e.g., thousands

of years to converge).

Automatic Partitioning. FlexFlow [96], PipeDream [125], Tarnawski et al. [159], and DAPPLE [71]

all auto-partition model training graphs over multiple devices with the help of cost models. How-

ever, each of these do not consider all the parallelism dimensions considered in this chapter: pipeline

and tensor model parallelism, data parallelism, microbatch size, and the effect of memory-savings

optimizations like activation recomputation on the training of models larger than the memory capac-

ity of an accelerator. These added dimensions increase the search space that needs to be explored.

Gholami et al. [75] show how communication costs for combinations of data and model parallelism

can be modeled.

HPC for Model Training. Goyal et al. [76] and You et al. [178] both demonstrate the use of High

Performance Computing techniques to train highly-accurate ImageNet models in minutes. However,

the image classification models considered fit comfortably on a single accelerator, rendering model

parallelism unnecessary, support very large batch sizes (> 32k) that allow scaling data parallelism

to large worker counts with infrequent communication, and are composed of compact convolutional

layers that are inherently amenable to data-parallel communication (Figure 2.1).

4.7 Discussion and Summary

In this chapter, we have shown how PTD-P (inter-node pipeline parallelism, intra-node tensor

parallelism, and data parallelism) can be composed to achieve high aggregate throughput (502

petaFLOP/s) while training large models with a trillion parameters. This facilitates end-to-end

training in reasonable times (estimated time of around 3 months for a trillion-parameter model).

We discussed the various tradeoffs associated with each of these types of parallelism, and how the

interactions between them need to be considered carefully when combined.

Even though the implementation and evaluation in this chapter is GPU-centric, many of these

ideas translate to other types of accelerators as well. Concretely, the following are ideas that are

accelerator-agnostic: a) the idea of smartly partitioning the model training graph to minimize the

amount of communication while still keeping devices active, b) minimizing the number of memory-

bound kernels with operator fusion and careful data layout, c) other domain-specific optimizations

(e.g., scatter-gather optimization).
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Chapter 5

Gavel: A Framework for

Heterogeneity-Aware Scheduling

5.1 Introduction

As Moore’s law comes to an end, specialized accelerators such as GPUs, TPUs, FPGAs, and other

domain-specific architectures have emerged as an alternative to more general-purpose CPUs. These

accelerators have been deployed to great effect [97, 73] to train state-of-the-art deep neural network

(DNN) models for many domains, including language, image and video [164, 40, 83, 84, 150].

Consequently, users today must choose from a wide variety of accelerators to train their DNN

models. For example, public cloud users can rent several generations of NVIDIA GPUs and Google

TPUs from cloud providers [2, 3, 4]. Even organizations with private clusters have accumulated

different accelerator types over time [91]; anecdotally, our research group at Stanford has NVIDIA

Titan V, Titan X, and P100 GPUs in its private cluster. Resources in these multi-tenant settings

are typically arbitrated by a scheduler. GPU cluster schedulers such as Themis [114], Tiresias [79],

AlloX [106], and Gandiva [172] thus need to decide how to allocate diverse resources to many users

while implementing complex cluster-wide scheduling policies, optimizing objectives such as fairness

or makespan. Unfortunately, choosing the most effective accelerator types in this context is difficult

for three reasons:

Performance Heterogeneity. Commonly used models show heterogeneous performance behavior

across accelerator types due to various architectural differences. For example, Figure 5.1a shows

that a ResNet-50 model sees a nearly 10× speedup from an NVIDIA V100 GPU compared to a K80

GPU, while an A3C Deep Reinforcement Learning model only sees a 2× speedup. However, as

shown in Figure 5.1b, the V100 is no longer the optimal choice for all models when we consider

93
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Figure 5.1: Throughputs and dollar-normalized throughputs of training for various ML models.
Dollar-normalized throughputs are computed by dividing the corresponding throughput by the rel-
evant GCP on-demand price. The magnitude of speedup across GPU generations varies significantly
across models.

the number of samples trained per dollar – for many models, the older P100 GPU is competitive or

cheaper on a per-dollar basis. Some scheduling policies can also benefit from splitting a job between

multiple resource types: for example, minimizing a job’s cost subject to a latency SLO (e.g., complete

a job in 10 hours) might involve using a cheaper accelerator to begin training and then switching

to a faster, more expensive device to meet the SLO. Thus, for even simple single-job settings, the

choice of accelerator type is non-trivial and depends on both the job and the policy. This gets

more complicated in multi-job settings as granting all jobs their preferred accelerator simultaneously

might not be possible. Existing schedulers like Gandiva, Tiresias, and Themis do not consider this

heterogeneous performance behavior.

Generality across Policies. Cluster operators might want to implement different scheduling poli-

cies based on their business goals, such as optimizing for time to complete a set of batch jobs

(makespan), fairness for ad-hoc jobs, or more sophisticated hierarchical policies that divide resources

among high-level entities (e.g., departments) using one policy, and then individual jobs within the

entity using another [91]. In data analytics clusters, many job schedulers have support for hier-

archical allocation policies [11, 179, 12, 28] already. The two recently proposed GPU schedulers
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that do consider heterogeneous resources, AlloX [106] and Gandivafair [48], optimize for a single

scheduling objective, and tightly couple their scheduling mechanism to that objective (e.g., max-min

fairness). Thus, they cannot easily support the more sophisticated policies often used in practice.

Colocation and Placement Optimizations. To improve cluster utilization, existing GPU sched-

ulers often deploy optimizations such as space sharing as in Gandiva [172], where multiple jobs can

use the same accelerator concurrently, and placement sensitivity as in Themis and Tiresias [114, 79],

which involves the careful placement of tasks in a distributed job to ensure good scaling perfor-

mance. The performance benefits of these optimizations should be considered explicitly while opti-

mizing for global scheduling objectives, since these optimizations are more effective when deployed

in a heterogeneity-aware way. We show that explicit modeling for space sharing can improve objec-

tives by 2.2× compared to Gandiva’s ad-hoc approach.

In this chapter, we present Gavel, a new cluster scheduler designed for DNN training in both

on-premise and cloud deployments, that effectively incorporates heterogeneity in both hardware

accelerators and workloads to generalize a wide range of existing scheduling policies in a completely

automated fashion. For example, Gavel can provide heterogeneity-aware versions of fair sharing /

least attained service [79], FIFO, minimum makespan, minimum cost subject to SLOs, finish-time

fairness [114], shortest job first, and hierarchical policies [179, 28].

Gavel’s key observation is that many widely used scheduling policies, including hierarchical

ones, can be expressed as optimization problems whose objective is a function of the jobs’ achieved

throughputs. For example, the least attained service policy involves maximizing the minimum scaled

throughput across jobs, the minimize makespan policy involves minimizing the maximum duration

(computed as the ratio of number of iterations to achieved throughput), and so on. Given the opti-

mization problem for a scheduling policy, Gavel introduces a general way to transform the problem

to make it heterogenity-, colocation- and placement-aware. In particular, Gavel changes the problem

to search over a heterogeneous allocation for each job, the fraction of time spent in various resource

configurations (e.g., 60% of time running alone on a V100 GPU and 40% of time space-sharing an

A100 GPU with another job), and changes the throughput terms in the objective function to effective

throughput, i.e. the average throughput of the job over the mix of resources in its allocation. Ad-

ditional constraints need to be added to ensure that the returned allocation is valid. We show that

Gavel’s transformed optimization problems are efficient to execute even for clusters with hundreds

of GPUs and jobs, and can support a wide range of policies. Many of these problems can be solved

using a sequence of one or more linear programs.

Gavel’s heterogeneity-aware allocations for each job need to be mapped to actual scheduling

decisions (placement of jobs on specific resources in the cluster for a specified duration of time). To

achieve this, Gavel uses a preemptive round-based scheduling mechanism to ensure that jobs receive

resources in fractions similar to the computed target allocation. Gavel’s scheduling mechanism needs
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to be able to schedule both distributed training jobs, which request multiple accelerators at once, as

well as combinations of jobs running concurrently on a given accelerator due to space sharing.

Gavel makes these scheduling decisions transparently: it specifies an API between the scheduler

and applications that allow jobs written in existing deep learning frameworks like PyTorch [134] and

TensorFlow [36] to be moved between resources with minimal code changes, and uses a mechanism

similar to Quasar [63] to estimate performance measurements of colocated jobs, which are needed

as inputs to Gavel’s policies, when not available a priori.

By explicitly considering performance heterogeneity, Gavel improves various policy objectives

(e.g., average job completion time or makespan): on a smaller physical cluster, it improves average

JCT by 1.5×, and on a larger simulated cluster, it increases the maximum input load a cluster can

support, while improving objectives such as average job completion time by 3.5×, makespan by

2.5×, and cost by 1.4×.

Summary of Contributions. To summarize, our main contributions are:

• A systematic method to convert existing cluster scheduling policies into equivalent policies that

consider heterogeneity and colocation; these equivalent optimization problems are practical

for current DNN clusters.

• A round-based scheduling mechanism to ensure that the cluster realizes the allocations re-

turned by these policies.

• Generalizations of many existing policies that improve corresponding objectives.

Gavel is open sourced at https://github.com/stanford-futuredata/gavel.

5.2 Background

In this section, we provide a brief overview of DNN training (§5.2.1), and discuss performance

optimizations used in existing schedulers that Gavel can help deploy more effectively (§5.2.2).

5.2.1 Deep Neural Network (DNN) Training

DNN training proceeds in iterations. In each iteration, the DNN processes a collection of inputs

(called a batch) and subsequently updates the model parameters using gradients derived from the

input batch. Each batch is typically of similar size, which means model training throughput using

short profiling runs (order of minutes). Gavel leverages this fact in its throughput estimator. Jobs

are typically fairly long-running (on the order of hours to days), and can be distributed over many

workers [34, 172].

https://github.com/stanford-futuredata/gavel
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Modern DNN schedulers leverage the fact that DNN training is iterative to suspend and resume

training at iteration boundaries [79, 172]; this ensures that jobs can be time multiplexed over the

existing physical resources. The latest model parameters need to be checkpointed to stable storage

when a job is suspended to ensure training progress is not lost. In this work, we show how time

sharing should be deployed to optimize various single- and multi-job objectives.

5.2.2 Performance Optimizations

Prior work has shown that GPUs can be severely under-utilized in multi-tenant clusters [91]; for

example, average GPU utilization (measured as the percentage of GPU Streaming Multiprocessors

active over time) was as low as 52% on a Microsoft cluster. Prior work has also shown the place-

ment of tasks for a distributed training job can have significant impact on performance. Gavel can

optionally deploy these optimizations systematically, as we show in §5.3.1.

Space Sharing. Smaller models often do not leverage the full computational capacity of modern

GPUs. In such cases, concurrently executing multiple models on the same GPU using NVIDIA’s Multi

Process Service (MPS) or CUDA streams can help improve utilization [35, 130].

Placement Sensitivity. DNN models show heterogeneity in their distributed scaling behavior de-

pending on the size of the tensors that need to be exchanged between workers during training: some

models have compact weight representations and can scale well even when workers are not on the

same server, while other models scale poorly when workers are spread over many servers. Existing

schedulers like Tiresias use heuristics for placement sensitivity.

5.3 System Overview

Given a collection of jobs, Gavel arbitrates cluster resources (in the form of accelerators of dif-

ferent types) among the resident jobs, while optimizing for the desired cluster objective. This is

accomplished in a two-step process: first, a heterogeneity-aware policy computes the fraction of time

different jobs (and combinations) should run on different accelerator types to optimize the desired

objective. These policies require as input the performance behavior (in terms of throughputs) for

each job on each accelerator type, which can either be provided by the user, or can be measured

on the fly by Gavel’s throughput estimator. Allocations are intended to be respected only between

allocation recomputation events; for example, if job 1 is much longer than job 2, the allocation will

be recomputed once job 2 completes. Gavel can recompute its policy either when a reset event occurs

(job arrives or completes, worker in the cluster fails), or at periodic intervals of time. Given the pol-

icy’s output allocation, Gavel’s scheduling mechanism grants jobs time on the different resources, and

moves jobs between workers as necessary to ensure that the true fraction of time each job spends on
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different resources closely resembles the optimal allocation returned by the policy. Gavel’s workflow

is shown in Figure 5.2.
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Figure 5.3: The cumulative time each job spends on accelerator types between allocation recompu-
tations for allocation Xexample.

5.3.1 Heterogeneity-Aware Policies

Gavel expresses scheduling policies as optimization problems for various objectives of interest, such

as fairness or makespan, and allocations as matrices that specify the fraction of wall-clock time

a job should spend on each accelerator type between allocation recomputations. A matrix X can

represent allocations on a single accelerator type (homogeneous setting), on multiple accelerator

types (heterogeneous setting), as well as with other optimizations. Consider Xexample:

Xexample =

V 100 P100 K80
0.6 0.4 0.0 job 0

0.2 0.6 0.2 job 1

0.2 0.0 0.8 job 2

According to this allocation specified over three jobs and three accelerator types, job 0 should spend

60% of the time this allocation is valid on a V100 GPU, and the remaining 40% of time on a P100

GPU. This is shown visually in Figure 5.3.

Gavel finds an optimal value for the matrix X given a policy expressed as an optimization prob-

lem. To construct the optimization problem for a given policy, Gavel requires a throughput matrix T

with each job’s throughput (in training iterations per second) on different accelerators. Tmj can be

set to −∞ if job m does not run on accelerator type j (for example, due to memory constraints).

Given T and X, we define the effective throughput of a model m as the time-weighted average

throughput across accelerators and jobs. We denote this quantity throughputT (m,X) or simply

throughput(m,X) (dropping the T ) for brevity. For allocations X without space sharing,

throughput(m,X) =
∑
j∈

accelerator types

Tmj ·Xmj
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Figure 5.4: Performance of several DNN models when run concurrently on a single P100 GPU. The
cell at row i and column j reports the normalized throughput (iterations/second) achieved by co-
located models i and j. Throughputs are normalized with respect to the throughput achieved by
each model when run in isolation. Black squares show jobs that cannot co-locate due to memory
constraints.

Different cluster scheduling policies can be expressed as optimization problems for X while maxi-

mizing or minimizing an objective function. Constraints need to be specified to ensure that X is a

valid allocation. A hypothetical policy that maximizes total effective throughput looks like:

MaximizeX
∑

m∈jobs

throughput(m,X)

Subject to the constraints:

0 ≤ Xmj ≤ 1 ∀(m, j) (5.1)∑
j Xmj ≤ 1 ∀m (5.2)∑

mXmj · scale factorm ≤ num workersj ∀j (5.3)

These constraints ensure that each job-worker allocation is non-negative and between 0 and 1 (equa-

tion 5.1), that the total allocation for a job does not exceed 1 (equation 5.2), and that the allocation

does not oversubscribe workers (equation 5.3).

Space Sharing. Gavel’s allocation matrices can also incorporate space sharing (SS). While pre-

vious work has used greedy algorithms for space sharing, we found that different pairs of DNN

applications in practice have vastly different performance when colocated together, based on the

resources they consume (Figure 5.4). When using space sharing, X needs to contain rows for each
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viable combination of jobs, and T needs to have throughputs of the job combinations, like:

T =

V 100 P100 K80
40.0 20.0 10.0 job 0

15.0 10.0 5.0 job 1

(20.0, 7.5) 0.0 0.0 jobs (0, 1)

The SS-aware allocation X dictates the fraction of time that each job combination should spend on

each accelerator type.

We limit entries of T to combinations of at most 2 jobs; we found empirically that larger com-

binations rarely increase net throughput. Additionally, although the size of T grows quadratically

with the number of jobs even with job combinations of size 2, we found that in practice we only

need to consider combinations that actually perform well. We evaluate the scaling behavior of these

SS-aware policies in §5.7.4.

Objectives in terms of throughput(m,X) remain the same; however, throughput(m,X) now

needs to be computed to include the throughputs of co-located jobs:

throughput(m,X) =
∑
j∈

accelerator types

∑
k∈Cm

Tkjm ·Xkjm

The constraints need to be slighly modified as well to ensure that X is still a valid allocation:

0 ≤ Xkj ≤ 1 ∀(k, j)∑
k∈Cm

∑
j Xkj ≤ 1 ∀m∑

kXkj · scale factorm ≤ num workersj ∀j

Cm is the set of all job combinations that contain job m.

Placement Sensitivity. Similarly, Gavel’s allocation matrices can also be extended to incorporate

placement sensitivity. The observed throughput for distributed jobs depends on the location of tasks,

as well as the model and accelerator type (slower workers are less likely to be communication-bound,

which means consolidation of tasks is less effective). We can make our policies placement-sensitive

by considering the performance of distributed jobs in: 1) a consolidated setting, where as many

accelerators are on the same server as possible (for example, 8 GPUs per server if using 8-GPU

servers), and 2) an unconsolidated setting, where accelerators are on independent servers. These

are extreme points in the placement space, and are upper and lower bounds on performance. We can

model this in our policies by having two different worker types (consolidated and unconsolidated)

with corresponding throughput values in T and allocation values in X.
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Figure 5.5: Priorities are used to move the received allocation towards the intended allocation (in
this case, Xexample). prioritiesn is computed as X/rounds receivedn (element-wise division).

5.3.2 Round-based Scheduling Mechanism

After computing the optimal allocation, Gavel’s next step is to assign jobs (or job combinations, in

the case of SS) to accelerator types while matching the optimal allocation as closely as possible.

That is, to realize the allocation Xexample above, the scheduling mechanism needs to make sure that

in the time period where jobs 0, 1, and 2 are the only three runnable jobs in the cluster, jobs should

receive resources according to their computed optimal time fractions.

To do this, the scheduler computes a priority score for every job and accelerator type combi-

nation. This priority score is high when a job has received a smaller time fraction on a particular

accelerator type than specified in the optimal allocation. Scheduling is performed in rounds; in

each round, the scheduler runs jobs in decreasing priority order, while ensuring that a given job is

not scheduled on multiple sets of workers (or accelerators) in a given round. This is shown in Fig-

ure 5.5. Priorities are updated as rounds complete. We have found empirically that round durations

of around 6 minutes allow Gavel to effectively approximate the ideal allocation (§5.7.5).

5.3.3 Throughput Estimator

To estimate the throughputs of concurrent jobs (e.g., in the case of space sharing), Gavel employs a

throughput estimator, similar to those found in prior work such as Quasar [63]. Gavel’s throughput

estimator maps a new job to a set of pre-profiled reference jobs. The throughputs of the closest

reference job can then be used as the initial performance estimate for the new job’s combinations.

For individual jobs, the throughput estimator is not needed, since throughputs can be estimated on

the fly as jobs run on different resource types.
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5.3.4 Limitations and Non-Goals

While Gavel exposes a flexible API that supports a variety of policies and objectives, we do not pro-

pose new scheduling policies or performance optimizations in this work. Instead, Gavel’s main

goal is to determine how best to share resources amongst many different users and jobs in a

heterogeneity-aware way, while supporting many existing cluster-wide objectives. Gavel accom-

plishes these goals with a policy framework that easily allows policies to be made heterogeneity-,

colocation-, and placement-aware (§5.4), a reusable scheduling mechanism (§5.5), and a narrow

scheduler API that allows users to deploy their applications with minimal code changes (§5.6).

5.4 Scheduling Policies

In this section, we show how various scheduling policies such as max-min fairness (Least Attained

Service or LAS) and multi-level fairness can be expressed as optimization problems in terms of

effective throughput. We describe some properties of the resulting heterogeneity-aware allocations

at the end of this section.

5.4.1 Max-Min Fairness as an Optimization Problem

The classical Least Attained Service (LAS) policy, used by Tiresias [79], implements max-min fairness

across active users in the cluster, by round-robining resources across jobs according to the total

number of accelerator hours consumed. This can be modified into a weighted max-min fairness

policy with per-user weights wm. On a homogeneous cluster, if a job m with weight wm receives a

fraction Xm (which is a scalar since there is only one resource type), LAS can be expressed as the

following optimization problem:

MaximizeX min
m

1

wm
Xm.

We need to add a constraint to ensure that the cluster is not overprovisioned (
∑

mXm ≤ 1).

However, this vanilla LAS policy is not fair in a heterogeneous setting; jobs might see unequal

reductions in throughput due to variations in performance across accelerator types. For example,

giving one job a K80 and another job a V100 would equalize their number of resources, but could

result in very low performance for the job with the K80.

To compute a more fair allocation, we can compute max-min fairness over the weighted normal-

ized effective throughputs (defined in §5.3.1). Let Xequal
m be the allocation given to job m assuming

it receives equal time share on each worker. For example, if the cluster had 1 V100 and 1 K80,

Xequal
m = [0.5, 0.5]. Xequal

m scales the effective throughputs to make them comparable across jobs.

MaximizeX min
m

1

wm

throughput(m,X)

throughput(m,Xequal
m )

.



CHAPTER 5. GAVEL: A FRAMEWORK FOR HETEROGENEITY-AWARE SCHEDULING 105

Policy Description

Makespan Minimize time taken by batch of jobs.
LAS [79] Max-min fairness by total compute time.
LAS w/ weights Max-min fairness with weights.
Finish Time Fairness [114] Maximize minimum job speedup.
FIFO First in, first out.
Shortest Job First Minimize time taken by shortest job.
Minimize cost Minimize total cost in public cloud.
Minimize cost w/ SLOs Minimize total cost subject to SLOs.
Hierarchical [179] Multi-level policy: FIFO, fairness, etc.

Table 5.1: Policies that can be expressed in Gavel.

As specified in §5.3.1, additional constraints need to be specified to ensure that allocations are valid.

As an example, consider 3 jobs which benefit differently when moved from a K80 to a V100 GPU:

T =

V 100 K80
40.0 10.0 job 0

12.0 4.0 job 1

100.0 50.0 job 2

Solving the above optimization problem with wm = 1, and a cluster with 1 V100 and 1 K80 yields

the following allocation:

Xhet. =

V 100 K80
0.45 0.0 job 0

0.45 0.09 job 1

0.09 0.91 job 2

Jobs receive about 10% higher throughput compared to an allocation where every user is given 1/n

of the time on each accelerator (here, n = 3), also called an isolated allocation [74].

Objective functions for fairness policies need to be modified to take into account multi-resource

jobs (scale factorm > 1), since these multi-resource jobs occupy a larger share of the cluster per unit

time. An easy way to do this is to multiply the max-min objectives from before by scale factorm.

Concretely, the LAS objective from before becomes:

MaximizeX min
m

1

wm

throughput(m,X)

throughput(m,Xequal
m )

· scale factorm.
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5.4.2 Other Policies as Optimization Problems

We can express many other common cluster scheduling policies, some proposed by recent papers,

using throughput(m,X); we list these policies in Table 5.1. Most of these policies can be expressed

using a single linear program, with a few exceptions: the cost policies are formulated as a linear-

fractional program [13], which can be reduced to a sequence of linear programs. These optimization

problems yield corresponding heterogeneity-aware allocations. The optimal allocation can be com-

puted using off-the-shelf solvers.

Minimize Makespan. The makespan minimization policy tries to complete all active jobs as soon

as possible. Gandiva uses a version of this policy to finish higher-level tasks such as hyperparameter

tuning and AutoML, which involve training a large number of variants of a model. If num stepsm
is the number of iterations remaining to train model m, then the makespan is the maximum of the

durations of all active jobs, where the duration of job m is the ratio of the number of iterations to

throughput(m,X) (expressed in iterations / second). Overall, this can be framed as,

MinimizeX max
m

num stepsm
throughput(m,X)

.

Minimize Finish-Time Fairness (Themis). Themis [114] proposes a new metric called finish-time

fairness (represented as ρ), which is the ratio of the time taken to finish a job using a given allocation

and the time taken to finish the job using 1/n of the cluster (X isolated), assuming n users using the

cluster. This can be expressed in terms of throughput(m,X) as follows (num stepsm is the number

of iterations remaining to train model m, tm is the time elapsed since the start of training for model

m, and tisolated
m is the hypothetical time elapsed since the start of training if model m had 1/n of the

cluster to itself),

ρT (m,X) =
tm +

num stepsm
throughput(m,X)

tisolated
m +

num stepsm
throughput(m,X isolated)

.

The final optimization problem is then,

MinimizeX max
m

ρT (m,X).

FIFO. The First-In-First-Out (FIFO) policy schedules jobs in the order they arrive. In a hetero-

geneous regime, jobs should be placed on the fastest available accelerator type. Mathematically,

we can write this as maximizing the throughput of job m relative to its throughput on the fastest

type (throughput(m,X fastest)). Assuming that jobs are enumerated in order of their arrival time (m

arrived before m+ 1), a FIFO allocation can be computed with the following objective:

MaximizeX
∑
m

throughput(m,X)

throughput(m,X fastest)
(M −m).
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Figure 5.6: Example of a hierarchical policy. Weighted fairness across two entities (a product and
research team), fairness across jobs within the product team, and FIFO within the research team.

where M is the total number of jobs.

Shortest Job First. The Shortest Job First (SJF) policy finds the allocation that minimizes the

duration of the shortest job,

MinimizeX min
m

num stepsm
throughput(m,X)

.

Minimizing Total Cost and Cost Subject to SLOs. We can also express policies for deployments

that use elastic public cloud resources. Since cloud VMs are charged on a per-time basis, we can

express policies that explicitly optimize for total cost, speed, or both. We show details of such policies

in the next chapter.

5.4.3 Hierarchical Scheduling Policies

Modern cluster schedulers do not only deploy “single-level” policies. Hierarchical policies are com-

mon [11, 179, 28]: a large organization might share a single physical cluster among many sub-

organizations (or entities) using a fairness policy. In turn, each entity can share resources among

individual jobs according to a distinct per-entity policy, such as per-user fairness or FIFO. We give

an example in Figure 5.6, where a research and product team share the same physical cluster. The

research team runs ad-hoc experiments that can be executed in FIFO order, but the product team

needs to ensure that all its jobs receive a fair share of the cluster.

Gavel can currently support fairness in the upper levels and fairness or FIFO in the lower levels,

which matches the hierarchical policies supported by the Hadoop scheduler [11]. Determining how

to extend this to other types of hierarchical policies (e.g., with finish time fairness) is future work.

Gavel solves hierarchical objectives using a procedure called water filling [42], which is used

in other max-min fairness problems such as link allocation in networks [137]. At a high level,

the water-filling algorithm increases the allocation given to all parties at an equal rate to respect

max-min fairness, until a party saturates. The saturated party is then taken out, and the procedure
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is repeated until all commodities are saturated. We adapt this procedure to our setting, solving a

series of optimization problems iteratively: an LP that computes a fair allocation across entities while

respecting each entity’s internal policy, and an MILP that identifies bottlenecked jobs, i.e., jobs whose

effective throughputs cannot be further improved without lowering other jobs’ effective throughput.

We assume that each entity s is associated with a weight ws; the jobs belonging to this entity

receive a total cluster share proportional to this weight. We denote wjob
m to be the weight of job m,

set such that
∑

m∈s w
job
m = ws. Jobs are assigned priorities in accordance to the relevant entity’s

policy; for example, a fairness policy within an entity would assign each job a weight proportional

to its individual weight within the entity, while for FIFO, the first job in the queue would initially

receive the entire weight of the entity.

In each iteration, we solve the following modified LP (assuming scale factorm = 1 for simplicity):

MaximizeX min
{m:w

job
m>0}

1

wjob
m

(
throughput(m,X)

throughput(m,Xequal
m )

− tm
)
.

tm is the normalized effective throughput of job m in the previous iteration (tm := 0 in the first

iteration). The above objective can be appropriately modified for scale factorm > 1. Bottlenecked

jobs are given priority 0 and no longer considered in future iterations. Priorities are redistributed

among non-bottlenecked jobs according to the entity’s policy at the end of every iteration. For

instance, in the example shown in Figure 5.6, if job 4 is bottlenecked, then its weight is reassigned to

job 5 in accordance to the FIFO policy, while if job 2 is bottlenecked, its weight is distributed equally

between jobs 1 and 3 in accordance with the entity’s fairness policy. The LP then solves the max-min

problem on the resources remaining while ensuring each job’s throughput does not drop compared

to the previous iteration’s allocation Xprev, expressed as throughput(m,X) ≥ throughput(m,Xprev)

for all m. Iterations continue until all jobs are bottlenecked. To make this procedure more concrete,

consider an example with 4 identical jobs: job 1 with a weight of 3.0, and jobs 2 to 4 with a weight of

1.0; and 4 identical GPUs. In the first iteration, job 1 is assigned resources such that its throughput

is 1.0, and jobs 2, 3, and 4 are assigned resources such that their throughput is 0.33 to respect

weights. Job 1 is a bottleneck; the throughput of the remaining jobs can still be increased. In the

next iteration, jobs 2 to 4 are given full-GPU allocations.

The final allocation satisfies both inter-entity and intra-entity policies. We note that the above

water-filling procedure can also be used for single-level fairness policies such as the one described

in §5.4.1 to improve the throughput of non-bottelenecked jobs.

Identifying bottleneck jobs in fairness policy. Solving a max-min fairness policy, such as LAS or

hierarchical fairness, results in an allocation that satisfies fairness metrics but may underutilize re-

sources in scenarios where the bottlenecked job’s throughput is matched by other jobs without using

all available resources. Identifying bottleneck jobs after an iteration of a fairness policy computation
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can be done by solving a mixed-integer linear program. The binary integer variable zm is set to 1

when job m’s scaled effective throughput can be improved without causing any other job’s scaled

effective throughput to drop below the minimum computed in the previous iteration of the policy’s

LP. We identify all jobs which are stuck as {m : zm = 0} by computing an allocation that maximizes

the sum of all zm:

MaximizeX
∑

{m:pm>0}

zm

Subject to:

zm =

1 if throughput(m,X) > throughput(m,Xprev)

0 otherwise

The conditional constraint on zm can be expressed as two linear inequalities:

throughput(m,Xprev) < throughput(m,X) + Y (1− zm)

throughput(m,Xprev) ≥ throughput(m,X)− Y zm

Y here is a sufficiently large number such that it is not an active constraint, such as the maximum

throughput of the job.

5.4.4 Properties of Gavel’s Policies

Existing scheduling schemes have been analyzed in terms of properties like sharing incentive, Pareto

efficiency, and strategy proofness [74]. We formalize Gavel’s heterogeneity-aware policies in the

context of these properties as well.

Homogeneous Clusters. For homogeneous clusters, Gavel’s heterogeneity-aware policies are equiv-

alent to the baseline policies (throughput(m,X) = Xm · Tm), since the heterogeneity-aware opti-

mization problems reduce to the original optimization problems with one accelerator type.

Sharing Incentive. For heterogeneous clusters, the policy’s objective metric (maximize least job

share in LAS, completion time of first job in FIFO, or makespan) is at least as good as it would be

under a policy that näıvely splits all resources equally among all runnable jobs. This is because

the allocation corresponding to giving each user 1/n of each resource is a feasible solution, so

Gavel’s solution will be at least as good. All Gavel policies thus have sharing incentive [74], which

encourages users to use the shared cluster rather than a static private share.

Colocation. Solutions with colocation are always at least as good as without colocation.
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Pareto Efficiency. Allocations of max-min fairness policies with water filling are Pareto efficient:

that is, the allocation for a particular job cannot be increased without decreasing the allocation for

another job. This follows directly from the water filling procedure.

Note that some of Gavel’s policies may not satisfy other desirable properties. For example, Sun

et al. [158] showed that no fair-sharing policy can simultaneously satisfy Pareto efficiency, sharing

incentive, and strategy proofness in a setting with interchangeable resources. If users manipulate

their throughputs, then they can possibly obtain larger shares of the cluster (e.g., jobs can be placed

on a faster accelerator type) for certain objectives. Exploring how to make Gavel’s policies strategy-

proof is interesting future work.

5.5 Scheduling Mechanism

Gavel’s scheduling mechanism schedules training iterations of runnable jobs on the available work-

ers (with possibly different accelerators), such that for each schedulable job (or combination), the

fraction of wall-clock time spent on each accelerator type is approximately equal to the computed

optimal allocation Xopt. This is challenging for two reasons:

1. Jobs can run on multiple accelerators. Moreover, since distributed training can be commu-

nication intensive [57, 125], jobs should be placed on accelerators “close” to each other (for

example, on accelerators on the same server, or on accelerators in servers in the same rack).

2. Combinations of up to two jobs can run on a set of accelerators in order to improve resource

utilization (space sharing). Each distinct job can have ≤ one job combination running in a

given round to prevent work duplication.

Gavel makes its scheduling decisions in rounds. This is similar in spirit to Tiresias’s [79] priority

discretization. However, Gavel’s scheduling mechanism differs from Tiresias’s in three ways:

1. Gavel needs to schedule jobs on different accelerator types: it needs to decide which job should

be active in any round and which accelerator type to use.

2. Gavel needs to grant resources to jobs while respecting an arbitrary allocation.

3. Gavel’s round-based scheduler grants time to jobs while ensuring that multiple job combina-

tions sharing a job do not run in the same round; Tiresias does not consider job combinations

and does not need to deal with this.

Gavel’s scheduler tries to place work on all available workers for a specific duration (this time

period is configurable; we use 6 minutes in our experiments). We call the work handed to each

worker in a given round a micro-task. Without rounds, jobs that request many accelerators can
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Figure 5.7: Round-based scheduling mechanism in action to achieve an allocation Xhet.+SS. Space
sharing is shown with vertically split boxes. Each round is denoted by a box.

suffer from starvation. For example, consider a cluster with 8 total accelerators and 4 available. The

scheduler can handle a 8-accelerator job waiting for resources in one of two ways:

1. Wait for 8 accelerators to become available; 4 accelerators will be unused until the full quota

of 8 accelerators becomes available.

2. Keep the 8-accelerator job in the queue, and give 4 accelerators to another job that requests a

fewer number of resources.

However, this situation can repeat itself, leading to starvation [179]. Scheduling is thus per-

formed in rounds to limit resource under-utilization, simplify scheduling logic, and ensure that jobs

with large scale factors do not experience prolonged starvation.

Since the number of active, schedulable jobs might far exceed the total number of workers, Gavel

first determines the job combinations that should run in the upcoming round. To do this, Gavel

maintains the time tmj spent by a job (or combination) m on accelerator type j, which is updated as

jobs run on different accelerator types. Given tmj , Gavel’s scheduler can then compute the fraction

of total wall-clock time spent by each job (or combination) m on each accelerator type j as fmj =

tmj/(
∑

m′ tm′j). The matrix of priorities is then just the element-wise division of Xopt by f .

Algorithm. In every round, we want to move fmj closer to Xopt
mj . This can be achieved by giving

high-priority jobs time on accelerator type j.

This problem can be solved exactly if jobs only request single accelerators and if space sharing

is not deployed by finding the num workersj jobs with highest priority (for example, using a heap).

However, jobs submitted to Gavel can be distributed, and space sharing can be used to improve

resource utilization. Solving this problem exactly with these added requirements makes the problem

similar to a multiple-choice knapsack problem [155], which is NP-hard.

To overcome these challenges, we observe that it is acceptable to make greedy sub-optimal

scheduling decisions occasionally in any given round, since we can recover from these sub-optimal

decisions in subsequent rounds: our goal is to ensure that the average allocation each job receives
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Algorithm 2 Algorithm for Gavel’s Scheduling Mechanism.

1: function SCHEDULE JOBS

2: active_combinations← all active job combinations
3: num_workers_rem.← number of total workers
4: while num_workers_rem.g > 0 do
5: j ← job combination with highest priority
6: Remove j from active_combinations
7: if j.scale_factor > num_workers_rem. then
8: continue
9: for all j′ that conflict (share a job k) with j do

10: Remove j′ from active_combinations

11: num_workers_rem. − = j.scale_factor

over multiple rounds resemble the computed allocation (the allocations returned by policies are op-

timal, which follows from how policies in Gavel are expressed as optimization problems). We study

the impact of this design choice in §5.7.5. A job (combination) not run in a particular round will

have increased priority in subsequent rounds until it receives accelerator time, while a job that runs

in a particular round will have decreased priority. This ensures that jobs do not suffer from starvation

if they have a non-zero optimal allocation.

Gavel uses a greedy algorithm to pick the highest-priority job combinations that fit in the pro-

vided resource budget. The algorithm maintains a set of eligible job combinations that can be

scheduled in the upcoming scheduling round. The scheduling mechanism then tries to add job com-

binations with highest priority into a job_combinations_to_schedule set. Once a job combination is

added to this set, all conflicting job combinations are removed from the set of eligible combinations

to ensure that a given job is not run more than once in a given scheduling round. Job combina-

tions that cannot fit in the current round due to space limitations (required number of accelerators

unavailable) are also removed from the set of eligible combinations. This procedure is detailed in

Algorithm 2. Gavel’s scheduling mechanism is decoupled from its policies, ensuring that the same

scheduling mechanism can be used for many different policies. Figure 5.7 shows Gavel’s scheduling

mechanism in action.

Once Gavel has decided what jobs (and combinations) should run in a given round on different

accelerator types, Gavel must decide how to place these jobs. Gavel’s scheduler places jobs in de-

creasing order of the number of requested workers, and tries to give jobs accelerators on the same

physical server to minimize fragmentation.

5.6 Implementation

We implemented a prototype of Gavel in approximately 9000 lines of Python code, and implemented

a simulator in about 500 LOC. We used cvxpy [67] to implement Gavel’s heterogeneity-aware poli-

cies, and gRPC [9] to communicate control messages between the scheduler and workers.
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Figure 5.8: Gavel’s throughput estimator. Profiling is combined with matrix completion to obtain a
fingerprint for every new job. The fingerprint is then used to find the closest reference job.

Interface between Scheduler and Applications. Gavel currently supports user applications writ-

ten in PyTorch [134]; support for TensorFlow [36] is left for future work. The scheduler and user

applications then interact through a narrow API. Gavel ships with a Python library that users can

import into their code. This library provides an implementation for a wrapper around existing

framework-provided data iterators (GavelIterator). GavelIterator ensures that each task in a dis-

tributed job runs for the same number of iterations, and synchronizes the conclusion of rounds

between the scheduler and workers. GavelIterator is instantiated with arguments train_loader

(base data loader), load_checkpoint, save_checkpoint, and a configuration object. load_checkpoint

is a pointer to a function that loads all necessary parameters and metadata from a checkpoint at the

start of a round, and save_checkpoint is a pointer to a function that creates a checkpoint at the end

of a round; these need to call appropriate framework methods (< 5 LOC).

GavelIterator contacts the scheduler near the end of a round to see if the same job will run in

the next round on the same worker. We call this a lease renewal. If the lease is not renewed, the

iterator calls save_checkpoint. The scheduler can then launch another job on the worker.

Throughput Estimation. Gavel uses a similar technique to Quasar [63] to estimate colocated

throughputs when using the optional space-sharing optimization (if they are not available a priori),

mixing profiling with matrix completion. Matrix completion enables sparse low rank matrices to

be reconstructed with low error [122, 46]. With matrix completion, Gavel is able to extrapolate

measurements obtained through direct profiling on separate workers dedicated to profiling, and

determine the job’s most similar pre-profiled reference job. The throughput estimator can then use

the reference job’s throughput measurements as an initial throughput estimate. Gavel’s throughput

estimator is diagrammed in Figure 5.8.

5.7 Evaluation

In this section, we seek to answer the following questions:
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Model Task
Dataset /

Application Batch size(s)

ResNet-50 [84, 10]
Image
Classification ImageNet [64]

16, 32,
64, 128

ResNet-18 [84, 112]
Image
Classification CIFAR-10 [101]

16, 32, 64,
128, 256

A3C [123, 78] Deep RL Pong 4

LSTM [27]
Language
Modeling Wikitext-2 [119]

5, 10, 20,
40, 80

Transformer [164, 87]
Language
Translation

Multi30k [69]
(de-en)

16, 32, 64,
128, 256

CycleGAN [181, 111]
Image-to-Image
Translation monet2photo [181] 1

Recoder [124]
(Autoencoder) Recommendation ML-20M [81]

512, 1024,
2048, 4096,
8192

Table 5.2: Models used in the evaluation.

• Do Gavel’s heterogeneity-aware policies improve objective metrics in a physical cluster (§5.7.2)

and in simulations of larger clusters (§5.7.3)?

• How do Gavel’s policies scale? (§5.7.4)

• How well does Gavel’s scheduling mechanism realize Gavel’s heterogeneity-aware allocations?

(§5.7.5)

• Is Gavel able to accurately estimate the throughputs of co-located jobs when using space shar-

ing? (§5.7.6)

5.7.1 Experiment Setup

We run experiments on both a physical and simulated cluster.

Clusters. We run physical cluster experiments on a cluster with 8 V100s, 16 P100s, and 24 K80s.

Simulated cluster experiments are run on a cluster with 36 GPUs of each type.

Traces. We run physical and simulated experiments on two types of traces: one where all jobs are

available at the start of the trace and jobs are not subsequently added (“static”), and another where

jobs are continuously added to the cluster (“continuous”). For the continuous trace, job arrival times

are generated according to a Poisson arrival process with an inter-arrival rate λ. For the simulated

experiments, we vary λ to show the extra load each heterogeneity-aware policy is able to sustain

in steady state. We run 3 seeds for every λ, and show standard deviations. For the physical cluster
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Trace System Objective Physical Simulation

Continuous Gavel Average JCT 3.4 hrs 3.7 hrs
Continuous LAS Average JCT 5.1 hrs 5.4 hrs

Static Gavel Makespan 17.7 hrs 17.6 hrs
Static Gandiva Makespan 21.3 hrs 22.1 hrs

Table 5.3: Comparison of end objective between physical experiment and simulation for two differ-
ent traces. For the continuous trace, we measure the average JCT of 25 jobs in a steady-state cluster.
For the static trace, we measure the total time needed to complete 100 jobs submitted at the start
of the run. The heterogeneity-aware policies improve target objectives, and results on the physical
cluster are in agreement with results on simulated cluster (< 8%).

experiments, we use a single λ that keeps the cluster well-utilized in steady state. The online traces

used in the simulated experiments have a variable number of jobs (at least 5000) and span 20-30

days. We measure the completion times of jobs with ID 4000 to 5000 to study steady state behavior

(new jobs continue to be added until jobs of interest complete). Job types are uniformly sampled

from the job table with 26 distinct job (or model) types, shown in Table 5.2. The online traces used

in the physical experiments span a day and have 100 jobs.

The duration of each job on a V100 GPU is sampled from an exponential distribution: jobs have

duration 10x minutes, where x is drawn uniformly from [1.5, 3] with 80% probability, and from [3, 4]

with 20% probability. Given the job’s observed throughput on the V100 GPU, the number of training

steps is then inferred by multiplying the throughput (in steps/sec) by the duration. This matches

the process used by Gandiva [172]. For the simulated experiments, we show results in two regimes:

one where all jobs use a single worker (“continuous-single”), and another where 70% of jobs request

a single worker, another 25% request between 2 and 4 workers, and the remaining 5% request 8

workers, as observed in published traces from Microsoft [34] (“continuous-multiple”).

Metrics. For fairness and FIFO policies, our target metric is average job completion time of steady-

state jobs, which is the same metric used by related work [115, 79]. We also show finish time

fairness (FTF) for policies that explicitly optimize for FTF. For makespan policies, our target metric

is the time needed to complete a job batch. For cost-related policies, the metric is cost (in dollars),

and the percentage of jobs that violate time SLOs.

5.7.2 End-to-End Results on Physical Cluster

For our physical cluster experiments, we run a heterogeneity-aware and a heterogeneity-agnostic

fairness policy on a continuous trace, and a heterogeneity-aware makespan policy against a baseline

that uses Gandiva’s ad-hoc space sharing on a static trace. Results are shown in Table 5.3. Gavel’s

heterogeneity-aware policies improved average job completion time by 1.5× and makespan by 1.2×.
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Model Overhead without Overhead with
lease renewals lease renewals

ResNet-18 0.94% 0.17%
ResNet-50 1.58% 0.25%
A3C 0.22% 0%
LSTM 2.91% 0.47%
Transformer 0.77% 0.11%
CycleGAN 0.77% 0.11%

Table 5.4: Overhead of using preemptive scheduling in Gavel, with and without lease renewals, and
with a round duration of 6 minutes.

For the makespan objective, we do not run Gavel with space sharing; in theory, space sharing would

additionally reduce makespan.

We also compare the real performance to simulations and observe that for both policies, the

difference between metrics in simulation and on the physical cluster is small (< 8%), indicating that

our simulator has high fidelity.

Table 5.4 shows the overhead of using Gavel’s preemptive scheduler with a round duration of 6

minutes, with and without lease renewals. Allocations and worker assignments can be computed

asynchronously. The only synchronous overhead is the loading and saving of checkpoints, which is

dependent on the size of the model. Lease renewals decrease this overhead by allowing jobs to run

on the same worker for extra rounds. The overhead of preemption, even without lease renewals and

with a short round duration, is low (< 3%).

5.7.3 End-to-End Results in Simulation

We use a larger simulated cluster to evaluate the efficacy of Gavel’s heterogeneity-aware policies

across a range of objectives, and compare with heterogeneity-agnostic versions from previous work

using a round duration of 6 minutes. As appropriate, we compare to other baselines like AlloX. Mag-

nitudes of speedups are higher for these experiments compared to the physical cluster experiments

since the simulated traces show job behavior over weeks, while the physical cluster traces are only

a day long; consequently, queue buildups are less extreme for the physical cluster experiments.

Least Attained Service (LAS). Figures 5.9 and 5.10 compare the vanilla LAS policy with its

heterogeneity-aware variants. We compare with two other baselines: a modified LAS policy that

uses Gandiva’s ad-hoc space sharing, and an AlloX policy that explicitly optimizes average job com-

pletion time (but only for single-worker jobs). We make three observations.

First, the heterogeneity-aware policies support higher load on the same cluster, reduce average

JCT by 3.5× for the continuous-single trace, and by 2.2× for the continuous-multiple trace (graph

can be read by comparing average JCT value for a given input job rate or x-intercept) at high load
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(b) CDF of job completion times (input job rate = 5.6 jobs/hr).

Figure 5.9: Comparison of heterogeneity-agnostic least attained service (LAS) policy to a
heterogeneity-aware LAS policy (Gavel), in simulation on the continuous-single trace. Each input
job rate is run with 3 seeds.
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Figure 5.10: Comparison of heterogeneity-agnostic least attained service (LAS) policy to a
heterogeneity-aware LAS policy (Gavel), in simulation on the continuous-multiple trace. Each input
job rate is run with 3 seeds; shaded regions show the standard deviation.
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(b) CDF of finish time fairness metric (input job rate = 2.6 jobs/hr).

Figure 5.11: Comparison of a heterogeneity-agnostic policy that optimizes for finish time fairness
(“Minimize FTF”) to a heterogeneity-aware one (Gavel), in simulation with the continuous-multiple
trace. Each input job rate is run with 3 seeds.

(5.6 jobs/hr for continuous-single, 2.6 jobs/hr for continuous-multiple). Second, the heterogeneity-

aware LAS policy supports higher load than AlloX, since AlloX can give short jobs preferential treat-

ment in the interest of optimizing average JCT, leading to long jobs experiencing starvation (long

tail in JCT CDF). At moderate load, AlloX represents a best-case scenario since it explicitly optimizes

for average JCT on a heterogeneous cluster. Gavel is able to essentially match this best case scenario,

while also supporting other objectives. Third, Gandiva-style packing, which randomly explores job

combinations until a combination that improves performance is found, is ineffective compared to

Gavel’s principled packing (2.2× better average JCT for both traces at high load).

Finish Time Fairness (FTF). We compare the heterogeneity-aware version of Finish Time Fairness

(FTF) to its heterogeneity-agnostic counterpart in Figure 5.11. The heterogeneity-aware policy re-

duces average JCTs by 3× and improves average FTF by 2.8×. FTF is the ratio of the time taken

to finish a job using a given allocation and the time taken to finish the job using 1/n of the cluster

(X isolated), assuming n users use the cluster. Lower FTF means jobs take less time with the provided
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allocation compared to X isolated.

Makespan. Gavel’s heterogeneity-aware makespan policy reduces makespan by 2.5× compared

to a FIFO baseline, and by 1.4× compared to a baseline that uses Gandiva’s ad-hoc space sharing.

Makespan is reduced by a further 8% when using space sharing with a high number of jobs.

FIFO. The heterogeneity-aware versions of FIFO allow the cluster to support average input job rate.

At high load, the heterogeneity-aware version without space sharing reduces average JCT by 2.7×,

and the heterogeneity-aware version with space sharing reduces average JCT by 3.8× at high load.

Space sharing is less effective for distributed jobs: it reduces average JCT by 1.1× with distributed

jobs, compared to 1.4× for the continuous-single trace.

LAS with Priorities. We also run an experiment with the LAS policies where 20% of jobs have

higher priority. At high load, Gavel reduces the average JCT of high-priority jobs by 1.5× and the

average JCT of low-priority jobs by 2.7×.

Cost. We simulate each of the cost policies on a 500-job workload comprised of ResNet-50 and

A3C jobs. As we observe in Figure 5.1b, the ResNet-50 job has the best cost-normalized throughput

on the V100 while the A3C job has the best cost-normalized throughput on the K80. Job durations

are chosen from {0.5, 1, 2, 4, 8} days, and job SLOs are chosen from {1.2×, 2×, 10×} job duration.

The policy that minimizes cost reduces the total cost compared to the policy that maximizes

throughput by a factor of roughly 1.4×. However, approximately 35% of jobs violate their SLO as

this policy prioritizes cheaper but slower GPUs; in particular, the A3C jobs are scheduled on K80

GPUs which results in violations for tight SLOs. In comparison, the policy that includes SLOs as

well eliminates all violations for a small increase in cost (a cost reduction of 1.2× compared to the

baseline policy), by ensuring that A3C jobs with tight SLOs are run on instances with V100 GPUs.

Multi-level Hierarchical Policies. Figure 5.12 shows the behavior of a multi-level fairness policy

as new jobs belonging to multiple entities are added to a heterogeneous cluster with equal numbers

of K80, P100, and V100 GPUs. Resources are granted to jobs in a way that respects both the

higher-level and lower-level policies: in Figure 5.12a, fairness is enforced both within and across

entities (as can be seen by the widths of the colored bands, which represents cross-entity fairness,

and the widths of bands within a color, which represents fairness across jobs within an entity), and

allocations are adjusted as new jobs come in. Figure 5.13 shows results with a fairness+FIFO policy;

later jobs in each entity 0 do not receive any GPU time to respect the per-entity FIFO policy.

The multi-level fairness policy can also be implemented in a heterogeneity-agnostic manner by

statically partitioning resources across users while respecting per-entity and per-user weights. While
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(a) Fraction of total throughput for each job with time.
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(b) Total throughput vs. time.

Figure 5.12: Behavior of a multi-level fairness policy with time as jobs are added to a small cluster
with 3 V100 GPUs, 3 P100 GPUs, and 3 K80 GPUs. Each line represents a separate job, and jobs are
added every 4 timesteps. The first 6 jobs belong to entity 0 (weight of entity, w0 = 1), the next 6
jobs belong to entity 1 (w1 = 2), and the last 6 jobs belong to entity 2 (w2 = 3).

this results in a fair allocation as well, we observe that total effective throughput is about 17% lower

compared to the heterogeneity-aware policy (Figure 5.12b).

5.7.4 Scalability of Heterogeneity-Aware Policies

Figure 5.14 shows the scaling behavior of the heterogeneity-aware LAS and multi-level fairness

policies with and without space sharing. We observe that even with 2048 active jobs, the hierarchical

policy without space sharing can be run in < 10 minutes. With space sharing, the policy can be

run with 512 jobs in < 10 minutes. The single-level LAS policy is much cheaper to compute in

comparison. We note that allocations do not need to be recomputed every scheduling round –

however, the longer the policy takes to run, the longer it takes for the new allocation to be acted

upon (jobs can still be given heterogeneity-agnostic allocations in the interim, and consequently

time on resources). We believe latencies of < 30 minutes for large clusters are still preferable to

non-preemptive schedulers where jobs experience large queuing delays, or preemptive schedulers

with heterogeneity-agnostic policies which lead to worse objective values, as shown above. We
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Figure 5.13: Behavior of a hierarchical policy (weighted fairness as top-level policy, FIFO as bottom-
level policy) with time as jobs are added to a small cluster with 3 V100 GPUs, 3 P100 GPUs, and 3
K80 GPUs. Each line represents a separate job, and jobs are added every 4 timesteps. The first 6
jobs belong to entity 0 (weight of entity, w0 = 1), the next 6 jobs belong to entity 1 (w1 = 2), and
the last 6 jobs belong to entity 2 (w2 = 3).

believe approaches like POP [126] can make this process even more efficient, allowing scaling to

larger clusters and more jobs.

5.7.5 Efficacy of Scheduling Mechanism

Figure 5.15a shows the effect of the round length on average JCT for the heterogeneity-aware LAS

policy with a single-GPU trace. We observed similar behavior on traces with multi-GPU jobs, as

well as other policies. A smaller round length gives Gavel’s scheduling mechanism more rounds to

course correct, allowing the true allocation and computed optimal allocation to more closely match.

We found that the time needed to load and save checkpoints for our target models is < 5 seconds,

which means that a round length of 6 minutes gives a good tradeoff between fidelity with the optimal

allocation and preemption overhead (preemption overhead shown in Table 5.4).

We compare this to an ideal baseline that allocates resources to jobs exactly according to their

computed allocation. As shown in Figure 5.15b, Gavel’s scheduling mechanism with a round dura-

tion of 6 minutes behaves almost identically to this ideal baseline with a single-GPU trace (behavior

with a multi-GPU trace is similar). We note that the ideal baseline is impractical to use in practice,

since jobs with different scale factors can complete at different times (leading to starvation), and

preemptions can be often since allocations for some (job, accelerator type) pairs are small, leading

to high overhead.

5.7.6 Impact of Throughput Estimation

Figure 5.16 shows the effect of Gavel’s throughput estimator on average JCT when using the space

sharing-aware LAS policy compared to the LAS policy without space sharing, and the LAS policy
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Figure 5.14: Scaling of LAS and hierarchical policies with the number of active jobs on a hetero-
geneous cluster with an equal number of V100, P100, and K80 GPUs. The size of the cluster is
increased as the number of active jobs is increased.
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Figure 5.15: (a) Effect of round length on average JCT for the heterogeneity-aware LAS policy. (b)
Comparison of scheduling mechanism to an ideal baseline that allocates resources to jobs exactly
according to the computed allocation for the same policy.

with space sharing and oracle throughputs. The throughput estimator is able to determine missing

throughputs in an online fashion accurately enough to observe a very small decrease in average JCT

at high load (orange and blue lines).

5.8 Related Work and Discussion

In this section, we compare Gavel to related work.

Existing DNN Training Schedulers. Several recent papers have proposed schedulers targeting

DNN training workloads.
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Figure 5.16: Comparison of SS-aware LAS policy with estimated throughputs, compared to the SS-
aware with oracle throughputs and LAS without space sharing on a heterogeneous 12-GPU cluster.

Gandiva [172] uses time and space sharing to reduce queuing delay and improve resource utiliza-

tion, but does not specify an explicit scheduling policy and does not support configurable objectives.

It uses a profiling-based methodology to determine whether to co-locate jobs on an accelerator. How-

ever, it does not incorporate model performance data (isolated or co-located performance) explicitly

into its scheduling policy, resorting to random exploration of job combinations until a combination

that improves performance is found.

Tiresias [79] and Themis [114] use different objectives to achieve multi-job fairness. However,

both do not incorporate jobs’ affinities for different accelerator types in their scheduling objectives,

and have scheduling mechanisms strongly coupled with the target policy, making it hard to support

other more sophisticated policies like multi-level fairness.

AlloX [106] and Gandivafair [48] are recent DNN schedulers that do consider worker and model

heterogeneity. However, both only work for single policies (average job completion time for AlloX,

max-min fairness for Gandivafair). Moreover, Gandivafair uses a second-price auction mechanism

to improve the performance of a heterogeneity-agnostic max-min fairness scheme, but does not

provide guarantees as to the optimality of the final allocation. On the other hand, Gavel formalizes

each policy as an optimization problem, and can provide a guarantee that the returned solution

is “optimal” according to the provided objective. Gavel is also able to support more sophisticated

policies such as multi-level fairness.

Traditional Cluster Schedulers. Traditional schedulers such as Mesos, Borg, TetriSched, and

YARN [85, 168, 161, 165] support workloads with fixed heterogeneous resource requests, but do

not reason about the performance characteristics of jobs across accelerators. Mesos and YARN do

not reason about interchangeable resource types that can run the same computation: for example,

Mesos’s DRF multi-resource sharing policy [74] decides how to give jobs allocations of distinct re-

source types, such as RAM and CPUs, but assumes that each job has declared which resources it

needs to use and in what ratio.
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The multi-interchangeable resource allocation (MIRA) problem [158] also introduces the notion

of effective throughput, but does not demonstrate how this can be used to specify policies as opti-

mization problems, does not consider performance optimizations like space sharing and placement

sensitivity, and does not discuss how computed allocations can be realized on physical resources.

Omega [145], Apollo [44], and Hydra [61] are schedulers that take into account the fact that

the target workload shows heterogeneity in the number and duration of constituent tasks. However,

tasks largely take the same time on different CPUs, and heterogeneity in memory capacities only

impacts the number and size of tasks that can be placed on a server. In our work, the compute devices

themselves are interchangeable with sometimes large performance differences, and policies decide

the time fractions of resources each job should receive while optimizing various end objectives.

Dynamic Performance Estimation. Gavel uses the approach proposed by Quasar [63] to estimate

co-located job performance online (§5.6). In particular, Gavel uses a mix of profiling and matrix

completion to compute a “fingerprint” against a set of reference models profiled offline. In this

work, we show that the techniques used by Quasar can be successfully applied to this new setting.

Applicability to Other Settings. Even though Gavel was explicitly targeted at allocating hetero-

geneous resources for DNN training workloads, we believe that Gavel can be used for non-DNN

workloads as well. Other workloads that are amenable to GPU execution, such as simulations, can

be considered, even though performance estimates for these applications will be needed. We also

believe the main technical insight presented in this chapter – formulating diverse scheduling policies

as optimization problems – is broadly applicable, and can be used to more easily deploy policies on

homogeneous deep learning clusters, and on CPU clusters as well.

5.9 Summary

In this chapter, we proposed Gavel, a heterogeneity-aware cluster scheduler that is able to optimize

for many high-level metrics like fairness, makespan, and cost. Gavel demonstrates how existing

policies can be expressed as optimization problems, and extends these policies to be heterogeneity-

aware. Gavel then uses a decoupled round-based scheduling mechanism to ensure that the optimal

allocation is realized. Gavel’s heterogeneity-aware policies improve end objectives both on a physical

and simulated cluster. It can support a higher average input job rate, while improving objectives such

as average job completion time by 3.5×, makespan by 2.5×, and cost by 1.4×.



Chapter 6

Exploiting Dynamic Pricing for

Training in the Public Cloud

6.1 Introduction

Cloud providers like AWS, GCP, and Azure provide an opportunity for users to rent instances of many

different types, in multiple regions and availability zones. In addition to reserved and on-demand

cloud markets for long-term and guaranteed instances, many cloud providers offer a market for

accessing unclaimed machines at lower cost, often referred to as the spot market. These instances

are priced independently and dynamically, according to instance-specific supply and demand. In this

chapter, we explore the following question: how much can a user benefit from a dynamic multi-cloud

instance market?

The primary challenge in taking advantage of spot pricing is that spot instances can be reclaimed

or preempted at any time. Applications running on spot instances thus need to be easily stoppable;

applications would then be restarted on another instance. DNN model training is a good example

of an application suitable for spot instances; its iterative nature makes it conducive to preemption.

DNN training is also compute-heavy and uses expensive instances with accelerators, and often uses

a static read-only training data set that can be easily copied across clouds and availability zones.

Using DNN training as a target workload, we focus on answering three important questions.

How should cloud instances be chosen? A DNN model can be trained in the cloud using many

instance types, with different accelerators (e.g., GPU generations like the K80, P100, V100; ded-

icated ML chips like the TPU [97]) and varying prices. DNN models are extremely diverse with

many operator types, and show widely different performance behavior across instance types. The

most appropriate choice of instance type depends on the model as well as the user’s objective (e.g.,

126
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throughput, cost, or a combination of the two, such as minimizing cost subject to a performance

SLO like “complete job X in 10 hours”).

Furthermore, spot instances, which are a cheap alternative to on-demand instances, are dynamic:

• Instances are priced differently across regions, availability zones, and cloud providers. These

prices change with time as supply and demand change.

• A spot instance may be preempted at any time.

• Instances with multiple accelerators may be in less demand compared to an instance with a

single accelerator of the same type, and consequently cheaper on a per-accelerator basis.

All these factors influence the optimal instance choice.

How should higher-level objectives over multiple jobs be taken into account? Many organi-

zations use public cloud instances to train models with the latest data on a repeated (e.g., daily)

schedule. In such a use case, cost may not be the only objective to optimize for, e.g., some important

jobs might have strict deadlines that must be met, even at a higher cost.

How can real systems realize these cost-saving opportunities? Leveraging the spot market

comes with many practical challenges, including dealing with instance preemption, determining

how to schedule jobs on instances while respecting the computed allocation, responding to price

changes, and transparently allowing movement of jobs between instances without user interven-

tion. We touch on these challenges in §6.5.

Summary of Contributions. We measured the cost benefits of leveraging the dynamic multi-cloud

instance market using AWS, GCP, and Azure instance prices collected over a month. We highlight

the following key takeaways:

• The optimal instance type for a given model is dependent on both the target objective (cost,

speed, or both) and performance characteristics of the model, even when using statically-

priced instances.

• The cost of moving model checkpoints between instances is cheap. Moving input datasets is

more expensive, but can be amortized over many jobs.

• Jobs do not need to be preempted more frequently than once a day to leverage the benefits

from spot instance price variations. We observe that cloud providers today change instance

prices at a much coarser granularity than before [30, 151]; this affects how systems leveraging

the dynamic spot market should be designed.
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• Instances themselves are usually preempted fairly infrequently (on the order of hours). In such

cases, recent systems such as Spotnik [169], which provides fine-grained resilience to transient

instance failures for distributed training, are not needed.

• The cost of training a model can be reduced by up to 3.5× (in practice, thousands of dollars) by

making use of all available sources of price variation, including by up to 1.4× when enabling

movement of applications across instances mid-computation.

Code and pricing data are open sourced at https://github.com/stanford-futuredata/training_

on_a_dime.

6.2 Background

In this section, we provide background on DNN training and instance pricing in the public cloud.

Deep Neural Network (DNN) Training. DNN training proceeds in iterations. In each iteration,

the model processes a collection of training data inputs (called a batch), and subsequently updates

its parameters using gradients derived from the batch. If training were interrupted, the model’s

parameters would need to be checkpointed to stable storage; state-of-the-art DNNs can have millions

to billions of parameters. These model checkpoints then need to be loaded on the new worker to

ensure that training progress is not lost. On-premise DNN schedulers leverage the fact that DNN

training is iterative to suspend and resume training at iteration boundaries [79, 172].

Pricing in Public Clouds. Cloud providers allow compute instances to be rented by users at fine

granularities. The standard way to rent instances from public cloud providers involves using on-

demand instances, which are guaranteed to be available at all times. Instances are hosted in different

regions; each region has multiple availability zones.

Using on-demand instances for long durations can be expensive. As a cheaper alternative, cloud

providers offer spot or preemptible instances, which can be preempted with little warning. Cloud

providers usually price these instances in one of two ways: either the spot price changes (capped

at the on-demand price) as demand changes (AWS and Azure), or the instances are offered at a

constant price and can only be run for 24 hours or less (GCP).

6.3 Quantitative Analysis of Cloud Pricing

In this section, we pose two questions in the context of training various DNN models on instances

with accelerators in the public cloud:

1. How should users go about picking which instance and accelerator type to use?

https://github.com/stanford-futuredata/training_on_a_dime
https://github.com/stanford-futuredata/training_on_a_dime
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Throughput Dollar-norm.
Model Throughput

P100 V100 P100 V100

Transformer 3.3× 3.3× 1.0× 0.8×
A3C 1.2× 2.2× 0.4× 0.4×
CycleGAN 4.5× 9.3× 1.4× 1.7×
ResNet-18 4.0× 6.8× 1.2× 1.2×
ResNet-50 3.7× 9.6× 1.1× 1.8×

Table 6.1: Throughput and dollar-normalized throughput (using GCP on-demand prices) speedups
with respect to a NVIDIA K80 GPU for various ML training workloads. The magnitude of speedup
across GPU generations varies significantly across models, with later GPU generations (V100) faster.
The V100 is no longer always optimal when considering dollar-normalized throughputs; dollar-
normalized speedups are smaller across all models.

2. Can jobs leverage the fact that instance pricing is dynamic and changes across cloud providers,

regions, availability zones, and over time, to achieve better allocations, as defined by the user’s

desired objective, by moving between instances (on the same or different cloud) over the

course of training? Is this practical, given the overheads of moving model checkpoints and the

associated input dataset?

6.3.1 Instance Type Choice for Various Models

Cloud providers like AWS, GCP, and Azure offer instances with various GPU types. Models use a

diverse set of operators, leading to vastly different performance behavior on these hardware ar-

chitectures. Table 6.1 shows the observed throughput speedups for various models and GPU types

compared to a NVIDIA K80 GPU. While one of NVIDIA’s more recent GPU offerings, the V100, out-

performs other GPUs for every model type, the relative speedup compared to the older K80 GPU is

model-dependent, and varies from 2.2× to 9.6×. However, instances with V100 GPUs also cost more

than instances with K80 GPUs.

The cost effectiveness of instances for a particular model can be compared using the model’s

cost-normalized throughput. When normalizing by the GCP on-demand price (we use GCP since

AWS does not offer P100 GPUs), we see that the K80 and P100 GPUs are superior compared to the

V100 GPU for certain models, like A3C [78] and Transformer [87]. The best GPU for a given model

on a cost basis can also change over time if using spot instances, which have dynamic pricing.

Moreover, users might have more nuanced deployments, where they have both cost and time

budgets; in such situations, we may want to switch between instance types partway through training.

For example, an optimal schedule may have a job spend 60% of training time on a cheap K80 GPU

and the remaining 40% on a faster V100 GPU to minimize cost while still ensuring that the provided

time budget is respected.
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Model Dataset Model Dataset Model
Size (GB) Size (GB) Cost Cost

ResNet-50 150 0.098 9.13% 0.006%
BERT-Base 17 0.408 0.98% 0.025%

Table 6.2: Dataset and model sizes for ResNet-50 and BERT-Base architectures, along with the com-
pute cost and egress costs (as a fraction of compute cost) for a single dataset and model transfer.
Each transfer is from a North American region to the Internet. Each model transfer is extremely
cheap. Dataset transfers are more expensive, but need to be performed only once per (dataset,
cloud provider) pair.

6.3.2 Leveraging Dynamic Pricing to Reduce Costs

We now consider the various costs incurred when dynamically moving training jobs between in-

stances within the same cloud provider or even across cloud providers.

Cost of Data Movement between Clouds

Moving workloads between instances is only economical if the cost of the associated data transfer is

less than the compute cost reduction from switching to the new instance.

Table 6.2 lists the dataset and model sizes for two commonly benchmarked models (ResNet-

50 [84] and BERT-Base [66]), as well as egress costs as a fraction of the cost of training these

models for 160 hours on V100 spot instances. We use ImageNet [64] as the ResNet-50 dataset and

English Wikipedia [32] as the BERT-Base dataset. The compute cost is measured as the cost of 160

V100-hours using spot instances. We use AWS prices for these measurements but find similar results

on GCP and Azure. We approximate the cost of a single model transfer by computing the cost of

10,000 model transfers and dividing by 10,000. Ingress into each cloud is free, and does not need

to be accounted for.

We observe that we can feasibly perform hundreds of transfers for each model before reaching

even 10% of the compute cost, since the cost of transferring a single model checkpoint is cheap

(on the order of cents). Furthermore, while a single dataset transfer is far more expensive than

transferring a model checkpoint, the dataset need only be transferred once to each cloud during

training and can be amortized over many jobs that use the same dataset. This transfer cost is zero if

the user already has a copy of the input dataset available on all target clouds.

Volatility in Spot Instance Pricing for Compute

We collected spot instance prices for AWS and Azure over a month in February 2020; we were able to

collect 3 months of backfilled data for AWS. We only include the most interesting graphs in this sec-

tion; more graphs from our analysis are available at https://github.com/stanford-futuredata/

training_on_a_dime.

https://github.com/stanford-futuredata/training_on_a_dime
https://github.com/stanford-futuredata/training_on_a_dime
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Cloud Region GPU Type
Provider K80 P100 V100

Amazon (AWS) us-east-1 2.7× N/A 3.3×
Google (GCP) us-west-1 3.4× 3.4× 3.3×
Microsoft (Azure) us-east-1 7.3× 8.0× 5.1×

Table 6.3: Best-case cost reduction moving from on-demand instances to spot instances with a single
GPU on each cloud. The best-case cost reduction varies widely with cloud provider; however, as we
show later in Figure 6.2, availability also varies with cloud provider and instance type.
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Figure 6.1: Per-hour price of AWS spot instances with various GPU accelerators in the us-east-1

region. Prices can change with time and across availability zones, and are often capped at the on-
demand price (p2.xlarge, us-east-1f). Some instances (p3.16xlarge) exhibit no price variation.

Cost Reduction from Spot Instances. Table 6.3 shows the best-case cost reduction observed when

moving from an on-demand instance to a spot instance in the same region, for different clouds. Cost

reductions vary from 2.7× to 8×.

Variation of Spot Price with Time. The price of spot instances can change with time as demand

changes. Figure 6.1 shows the variation in spot prices for various instances with GPUs in the AWS

us-east-1 region. We observe that price changes across regions are not highly correlated with

each other, with some regions capped at the on-demand price. The cheapest availability zone in a

region can change with time. We also observe that some instances show extremely stable pricing

(p3.16xlarge).
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Figure 6.2: Availability of AWS and GCP preemptible instances. Vertical lines at the start of a
horizontal line show the time at which the request was granted, and vertical lines at the end of a
horizontal line show the time at which the instance was preempted. The frequency of preemption
changes with both availability zone and instance type. GCP preempts instances at least every day.

Availability. GCP adopts an alternate pricing model for preemptible instances: prices stay constant,

but instances might be preempted when demand exceeds supply. Figure 6.2 shows timelines of

availability for instances with GPUs on AWS and GCP. Instances on AWS are more reliably available

for longer (not capped at 24 hours). Instances in some regions were preempted more often than

others (greater frequency of vertical lines); 8×GPU instances were preempted less frequently on

GCP. Preemption is preceded by a 2-minute warning which can be used to checkpoint the model.

For most regions and instance types on AWS, preemption is relatively infrequent (order of hours

instead of minutes).

Instance Prices across Clouds. Figure 6.3 shows the price of the cheapest and most expensive

instances with different numbers of accelerators across clouds. The cheapest cloud provider changes

with instance type. In some cases (not shown), GCP is the cheapest option, but jobs are preempted

after at most 24 hours.
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Figure 6.3: Minimum and maximum spot price over all availability zones and regions in the US
for various cloud providers. GCP uses a static pricing model. Instance types have different relative
orderings, and at any given time, the ordering can change (e.g., as in Figure 6.3d).

Per-GPU Price for Multi-GPU Instances. We also studied the variation of price on a per-GPU basis

across instances with different numbers of the same GPU type (e.g., AWS has 1×, 8×, and 16×K80

instances). As shown in Figure 6.4, we found that on a per-GPU basis, instances with a larger

number of GPUs have more stable pricing. However, a user may need to pack multiple jobs onto the

larger instance (or run a single multi-GPU job) to fully utilize it.
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Figure 6.4: Normalized cost on a per-GPU basis for instances with K80 and V100 GPUs. Instances
with K80 GPUs have 1, 8, and 16 GPUs, while instances with V100 GPUs have 1, 4, and 8 GPUs. We
found that instances with a greater number of GPUs generally exhibit more stable pricing.
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Figure 6.6: Average cost reduction from allowing dynamic switching of instance type, cloud, and
availability zone during training, while varying job duration. Longer jobs are able to make use of
greater variability in prices over longer horizons, consequently leading to larger cost reductions. The
right two bars in Figure 6.5 shows the impact of dynamic switching for jobs with a duration of 4
V100-days.

End-to-End Cost Reduction

We show the net reduction in compute cost of training a single ML model using all these sources of

price variation in Figure 6.5. Each ML training job takes 4 days to complete, and we show price

reductions for single-GPU jobs for simplicity. All strategies before multi-cloud use AWS instances

with GPUs in the us-east-1 region; multi-cloud and dynamic use the cheapest instance available

across AWS and Azure. GPU type chooses the GPU with best cost-normalized throughput (instead of

1×V100 instances) when the job starts and then sticks with that choice throughout, multi-GPU picks

instances with multiple accelerators if they are cheaper on a per-GPU basis, and dynamic adapts the

choice of instance through training as prices change. All results assume that datasets are available

on each cloud (dataset movement cost is 0).

We can reduce costs by up to 3.5× compared to the baseline of using the cheapest 1×V100

instance. The effectiveness of each strategy depends on the GPU type where the model has the

highest cost-normalized throughput (Table 6.1), which can change with time depending on the

pricing behavior of these instance types across AWS and Azure. For example, ResNet-50 [84] is

always cheapest on V100 instances, which show stable pricing; consequently, cost reductions are

minimal. We note that the movement of checkpoints is extremely cheap (cents / transfer) and the

number of transfers is small, since prices change only daily and not every price change leads to an

instance switch.

Impact of Job Duration on Effectiveness of Dynamic Scheduling. We further study the impact

of job duration on cost savings when using dynamic scheduling, where jobs can be moved between

instances as training proceeds and the initial instance choice is not locked in through the duration

of training. In Figure 6.6, we show the cost reduction of switching instances across GPU types,

availability zones, and clouds during training as job duration changes compared to using the best

option across cloud providers at the start of training and sticking with this choice (red and purple
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bars in Figure 6.5). We see a cost reduction of up to 1.4× for long-duration jobs that can take

advantage of pricing over longer horizons. Long-duration training jobs are common as models

become larger. For example, the recently released GPT-3 model [45] requires about 100 V100-years

of total training computation.

Cost reductions vary across models since cost-normalized throughputs for different models can

change with time, e.g., the Transformer model switches between the Azure K80 and P100 instances.

Cost reductions are small for short-duration jobs since instance pricing is stable over the short term

(≤ 2 days). The number of switches between instances needed for these cost savings is small (≤
3). We note that even though we only looked at single-GPU jobs in this section, the cost savings are

valid even for multi-GPU jobs. In particular, the durations of distributed jobs which use many GPUs

is still often on the order of weeks to months [45].

6.4 Higher-Level Objectives

When training a collection of ML models, users might want to allocate resources while optimizing

for higher-level objectives. For example, users might want to minimize cost alone, or minimize cost

subject to performance SLOs (e.g., complete training in the next 12 hours), or minimize the time

needed to complete a collection of training jobs with a given cost budget.

Representing Allocations and Throughputs. As we noted earlier, optimizing more complex ob-

jectives might result in allocations where jobs move dynamically between instance types. As in the

previous chapter, allocations can be specified as the fraction of wall clock time a training job should

spend on each instance type (represented as X), and scheduling policies can be expressed as opti-

mization problems involving X that try to maximize or minimize an appropriate objective function.

Objective functions can again be written in terms of effective throughput, the time-weighted average

throughput across instance types; given the relative performance of each job on each instance type

(T ), the effective throughput of a model m, throughputT (m,X), is simply
∑

j Tmj ·Xmj .

6.4.1 Baseline: Maximizing Total Throughput

Maximizing the total effective throughput achieved by a collection of jobs can be achieved by solving

the following optimization problem:

MaximizeX
∑
m

throughputT (m,X).
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We add the following constraints to ensure that each job is not over-allocated, and worker quotas

are not exceeded.

∑
j Xmj ≤ 1 ∀m∑

mXmj ≤ quotaj ∀j

6.4.2 Minimizing Total Cost

The above policy can be extended to incorporate cost. To minimize training cost, one can optimize:

MaximizeX
∑
m

throughputT (m,X)

cost(m,X)
.

Here, cost(m,X) is effective cost, computed as
∑

j cj ·Xmj , where cj is the per-hour cost of instance

type j. The numerator in each objective term represents the effective throughput in samples per unit

time, the denominator represents the effective cost in dollars per unit time, and the resulting fraction

is the effective normalized throughput in samples per dollar. As before, constraints are needed to

ensure that a job is not over-allocated resources, and worker quotas are not exceeded.

6.4.3 Objectives with Both Throughput and Cost

Jobs can have time SLOs as well, e.g., certain high-priority jobs might need to complete by a certain

cutoff time. To satisfy these SLOs, we can add additional constraints given SLOm for each model m

(models without SLOs can have SLOm set to∞):

throughputT (m,X) ≥ num iterationsm/SLOm.

Similarly, one could also formulate policies with a minimize makespan (time taken to complete

all jobs in a collection) objective, while keeping the cost within a prescribed cost budget B. The

objective here would be:

MinimizeXM.

M is the makespan. In addition to the constraints above that ensure that each job is not-allocated

and worker quotas are not exceeded, we need constraints that ensure that every job completes within

this makespan M , while also staying within the cost budget B,

num iterationsm
M

≤ throughputT (m,X) ∀m

M · (
∑

m costT (m,X)) ≤ B.

This can be solved by binary searching for the smallest M which results in a feasible solution.
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6.5 System Design Considerations & Discussion

In this section, we discuss important design considerations that real systems need to address to be

able to deliver these cost reductions in a transparent way. We also highlight some open questions

that we think are worth reflecting on.

Scheduling of Applications on Physical Instances. Given a theoretical allocation computed from

a policy, how should resources be allocated to applications, considering quotas on instances and ap-

plications that span multiple accelerators? In multi-cloud settings, how should datasets be streamed

between clouds when not already available? How should instance preemptions be handled?

API between the Scheduler and Applications. An application can be moved either when the

scheduler decides to take advantage of a pricing change, or when a spot instance is preempted by

the cloud provider. How can we enable the movement of applications between clouds, regions, and

availability zones seamlessly without user involvement?

These questions are especially pertinent with distributed training where state, such as IP ad-

dresses of participating workers, needs to be reset when preemptions occur. Fortunately, both forced

and voluntary preemptions are relatively infrequent (as can be seen in Figure 6.2 and §6.3.2), mean-

ing the cost of reconfiguration can be easily amortized away without using sophisticated failover

mechanisms like those proposed in Spotnik [169]. Recent work [132] has demonstrated how state

in the Horovod communication library [149] can be reset with minimal user intervention when

using elastic resources; similar techniques can be used for other communication libraries as well.

Instance Preemption. Spot instances are preempted at different rates (Figure 6.2). How should

one model the preemptions of instances? This is important since users might be willing to pay more

for a more reliable instance. Can we estimate the mean time to failure to decide which instance

types to use?

Spot Instance Pricing. Our measurements raise the following questions about how spot instances

are priced: Why do availability zones in the same region show different pricing? Why do instance

preemptions happen even when the instantaneous spot price is lower than the on-demand price?

Market Movement. What happens if all cloud users exploit the cost inefficiencies described in this

chapter, and use regions and availability zones with cheaper and / or more stable pricing? Can this

help with price smoothing, with each of the different AZs showing more similar pricing as demand

equalizes? In other words, will drastic changes in demand based on the movement of applications

to cheaper regions and availability zones cause prices to shift?



CHAPTER 6. EXPLOITING DYNAMIC PRICING FOR TRAINING IN THE PUBLIC CLOUD 140

Incentivizing Easier and More Efficient Multi-Cloud Deployments. In times of high demand,

cloud providers can preempt spot instances. In such cases, it might make sense for a user to take

their computation to a different cloud provider – this not only could give the user a better experience,

but can also improve the experience of all other users by reducing demand and consequently the

likelihood of preemption. An auction system where cloud providers can bid for a small fraction

of another cloud provider’s jobs could solve this problem – the original cloud can receive a small

commission for forwarding the job to another cloud while also partially alleviating demand, the

bidding cloud receives additional business that it might not have otherwise received, and users

receive better service.

ML Inference. Even though we only considered ML training as a target application in this chapter,

we believe ML inference is an interesting target application as well. ML inference, however, intro-

duces different challenges: in particular, instances need to be provisioned keeping system load in

mind, since system load has downstream ramifications on other metrics of interest like application

latency. Unlike training, where users mostly care about just throughput and consequently total time

needed to train a model end-to-end, inference applications have a number of performance-related

metrics of interest, such as average latency, tail latency, throughput, and throughput subject to la-

tency constraints. Each of these performance metrics can be combined with cost. How does one

optimize for these different objectives? Additionally, serverless offerings such as AWS Lambda and

Google Cloud Functions [29, 33] can be used in the inference context; however, these do not come

with accelerators attached. Can inference on cheap CPU cores for short durations compete with

more expensive but faster accelerators?

Packing Multiple Applications onto a Single Accelerator. Concurrently executing multiple mod-

els on the same GPU using NVIDIA’s Multi Process Service (MPS), CUDA streams, or new fea-

tures like Multi-Instance GPU (MIG) on the just released A100 GPU can help improve utiliza-

tion [91, 35, 130, 17]. Can this be used to further reduce cost and improve resource utilization

for end users?

Performance Modeling of Applications. Instead of relying on timing runs for each application on

each instance type, can we learn a performance model that predicts runtimes of applications? Can

we use this in settings where multiple applications are packed onto a single instance?

Other Applications. What other applications are long-lived and amenable to such optimizations?

For example, are physical simulations a good fit? How can one get around the fact that performance

in other applications might be less predictable, making optimization more challenging?
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6.6 Related Work

Existing work has looked at two ways to minimize cloud costs: performance modeling for instance

sizing, and leveraging the spot market. However, no prior work considers both; prior work also does

not specify how objectives over multiple jobs can be specified and acted upon in this setting.

Minimizing Costs in the Cloud. Existing systems, such as LLOOVIA [68, 70] and other resource

provisioning systems [157], have taken advantage of multi-cloud to minimize costs, but have focused

on on-demand and reserved cloud markets. AWS offers EC2 Fleet [31], a service that can launch

multiple on-demand and spot instances within a maximum budget. Other systems have proposed

using spot instances for DNN training. DeepSpotCloud [107] takes advantage of price differences

within availability zones and regions. HotSpot [151] and Stratus [56] are cost-aware schedulers that

move CPU jobs between spot instances to take advantage of dynamic pricing. However, all of these

systems use pre-specified instance types, do not account for application performance heterogeneity

across instance types, and cannot determine the optimal instance type for a given job / objective.

Selecting Instance Types. Existing work has looked at picking the right instance type for different

classes of applications. Ernest [166] and CherryPick [38] try to predict the runtime performance

of various applications on instance types available in the cloud, but do not consider spot pricing of

instances, and do not specify how these performance models can be used downstream to optimize

for various higher-level objectives.

6.7 Summary

In this chapter, we analyzed the impact of the dynamic pricing market in public clouds on the

cost of performing ML training. We found that moving jobs between instances is cheap, that jobs

can be preempted fairly rarely (once a day) to leverage the benefits from price variations, that

jobs themselves are preempted fairly rarely by the cloud provider, and that the cost of end-to-end

training for a given model can be reduced by up to 3.5× by exploiting the different sources of price

variation. We also showed how one can write policies that optimize combinations of speed and cost

for collections of jobs. We believe this is is an exciting area of future work, with applications to many

other domains besides ML training.
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Conclusions

7.1 Contributions

In this dissertation, we have shown that ML training is heterogeneous along both the workload (in

terms of the target model) and hardware dimensions. Consequently, using the same optimization

strategy in a model- and hardware-agnostic manner can result in sub-optimal performance. We

have shown that careful automated scheduling of computation on possibly heterogeneous resources

is useful in two broad problem contexts: distributed model training for single jobs and resource

allocation across one or more jobs in both private clusters and the public cloud.

7.1.1 Distributed Model Training

In applying pipelining to accelerate distributed model training, we made the following contributions:

• We discussed the challenges associated with using pipeline parallelism for distributed model

training: operator partitioning to load balance computation across pipeline stages and mini-

mize communication; scheduling forward and backward passes of different inputs to minimize

memory footprint, maximize throughput, and not compromise convergence speed of training;

and state management when necessary.

• We proposed new strategies for pipeline parallelism, and demonstrate the settings in which

these strategies are advantageous compared to previously proposed forms of parallelism. Each

of these strategies expose tradeoffs along the throughput, memory footprint, and weight up-

date semantics dimensions (Table 7.1), and consequently are optimal in different problem

settings. For example, PipeDream-Flush from Chapter 3 or the interleaved schedule from

Chapter 4 would not be suitable to train a small model like VGG-16 (with training footprint
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smaller than the memory capacity of a single GPU), since idle time would negate the benefits

of reducing the amount of communication between workers.

• Pipeline parallelism can be composed with other forms of parallelism, such as data and tensor

model parallelism. These parallelism modes interact in non-trivial ways. We demonstrated the

performance characteristics of these combinations, both empirically and analytically. A care-

ful combination of data parallelism with pipeline and tensor model parallelism can perform

training iterations of a model with up to a trillion parameters using 3000+ GPUs with high

efficiency (52% of theoretical peak device throughput). We were able to show that careful

combinations of pipeline and data parallelism are also useful at smaller scales (speedups of up

to 5× using just 16 GPUs).

• The best parallelization configuration can be picked in an automated way using an optimizer. A

carefully picked combination of data and pipeline parallelism can be up to 5× faster than data

parallelism alone by reducing the amount of communication that needs to be performed across

workers, while still keeping workers active without idling. Depending on the problem setup,

different partitioning algorithms can be used. For example, transformer models have repetitive

structures, thus allowing the partitioning algorithm in Chapter 3 to be much simpler with far

reduced asymptotic and empirical running time compared to the partitioning algorithm in

Chapter 2 (the partitioning algorithm in Chapter 2 makes fewer assumptions of the model

architecture, e.g., operators can be different, model architecture can feature branching, etc.).
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Pipelining Scheme Percentage of Memory Footprint Weight Update Equation
Ideal Time Idle (Weight, Activations)

GPipe [86]
p− 1

m
(1, m) W (t+1) =W (t) − ν · ∇f(W (t))

PipeDream (Chapter 2) 0 (p, p) W (t+1) =W (t) − ν · ∇f(W (t−p+1)
1 , . . . ,W

(t)
p )

PipeDream-2BW (Chapter 3) 0 (2, p) W (t+1) =W (t) − ν · ∇f(W (t−1))

PipeDream-Flush (Chapter 3)
p− 1

m
(1, p) W (t+1) =W (t) − ν · ∇f(W (t))

Interleaved (Chapter 4)
1

v
· p− 1

m
(1, p) W (t+1) =W (t) − ν · ∇f(W (t))

Table 7.1: Comparison of various pipelining approaches discussed in this dissertation along three dimensions: percentage of ideal
computation time spent in idle periods (pipeline bubble size), memory footprint (number of weight versions and number of stashed
activation versions), and weight update semantics. Lower idle time and memory footprint are better. p is the pipeline-parallel size, m
is the number of microbatches injected into the pipeline (typically m � p), and v is the number of virtual stages in the interleaved
schedule (v = 1 if interleaving is not used). The interleaved schedule reduces the pipeline bubble size by a factor of v, but also
increases the amount of in-pipeline communication by the same factor v. Vanilla PipeDream is the only pipelining scheme with
no gradient accumulation within the pipeline (minimum supported batch size of b, where b is the microbatch size used); the other
pipelining schemes use gradient accumulation within the pipeline (minimum supported batch size of b · p).
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7.1.2 Resource Allocation

We also were able to make a number of existing cluster scheduling policies heterogeneity-aware.

• We observed that the objectives of many popular policies (e.g., fairness, makespan, cost) can

be expressed as a function of each job’s observed throughput. Consequently, these policies

can be formulated as optimization problems; the optimal value returned from solving the

corresponding optimization problem gives the theoretically optimal allocation. Allocations

represent the time fractions each job should spend on the available resource types.

• Each optimization problem formulation can be extended to be heterogeneity aware by using a

concept called effective throughput, the time average of the raw throughputs each job observes

on the heterogeneous compute resources. The effective throughput captures the effect of

giving resources to various jobs in specific ratios prescribed by the allocation. The concept

of effective throughput also makes it possible to apply performance optimizations such as

space sharing in a heterogeneity-aware way with only small modifications to the allocation

format (and consequently changes to the constraints in the optimization problem and the

way effective throughput is computed). Our resulting heterogeneity-aware policies make it

possible to automate the process of allocating different types of GUs to training jobs with

different performance characteristics.

• A round-based scheduling mechanism can then ensure that each active job in the cluster ob-

tains its theoretically-optimal allocation. Each round is of configurable duration. Every round,

the scheduler decides what types of resources each job should receive (if any), while trying to

match the “received” allocation with the optimal allocation that is being matched. The round-

based scheduling mechanism also allows policies that deploy space sharing to be realized.

• Through this careful scheduling of jobs on resources (e.g., jobs that are slow on an older GPU

type are never given time on that resource type), we showed that objectives such as average job

completion time can be improved by 3.5× on clusters with various types of NVIDIA GPUs. The

same cluster can also handle 50% higher input load with these heterogeneity-aware policies.

• This policy framework can also be used in settings where we are trying to optimize cost. In

particular, these policies can integrate dynamic pricing and availability information from spot

instances to further reduce costs.

7.2 Broad Takeaways

This dissertation tried to demonstrate the usefulness of profile-driven automated optimization in

accelerating machine learning training. Machine learning computations are extremely regular: the
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same computation kernels are repeated in a highly iterative fashion, with little to no data-dependent

optimization. This makes profiles extremely easy to collect (e.g., by timing a couple of hundred it-

erations). In this dissertation, we used such profiles to determine how operators in a distributed

training job should be placed on various training resources, and also how individual jobs should be

placed on different types of training resources based on their affinity with the available hardware

types. The optimizers we used to solve these problems were diverse: we used dynamic programming

to decide how to execute distributed training more efficiently (how do we partition a model training

graph among n GPUs to maximize training throughput?), and linear programs to decide how to allo-

cate heterogeneous resources to different types of training jobs while optimizing various objectives

(how do we time- and space-share heterogeneous resources among training jobs with certain perfor-

mance characteristics to optimize a specific objective?). The profiles were also collected at different

granularities. For distributed model training, we collected per-operator profiles (computation times,

intermediate tensor sizes, parameter sizes for each operator in the model). For cluster scheduling,

we collected per-job profiles (end-to-end iteration time for models on different types of resources).

However, profile-driven optimization becomes harder to apply when computation is less regular.

For example, we did not target sparse models in this work. Determining the right optimization

algorithms for data-dependent executions is an interesting area of future study.

7.3 Future Directions

We conclude with some directions for future work related to the ideas presented in this dissertation.

Model Inference. This dissertation largely focused on the macro- and micro- scheduling challenges

associated with training modern deep neural network models. However, once trained, these models

need to be deployed in end applications. Executing model inference efficiently, however, presents

unique challenges:

• Users want to optimize for latency-related objectives (e.g., average latency, tail latency), which

are more diverse than just throughput. These objectives also have implicit dependencies on

throughput (e.g., if a system processes inputs slower than the rate at which they come in, then

latency will also increase due to an increase in queuing delay).

• Inference systems need to respond to inputs coming in from real users, as opposed to training

systems which operate on training data available a priori (usually stored as a full training

dataset on disk).

• Inference is an online workload (unlike training, which is offline).

Consequently, parallelizing and allocating resources for inference workloads is challenging: the

optimal parallel strategy might change as input distributions change (e.g., more inputs come in
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during the day compared to the night), and decisions need to be made on the order of seconds

(Gavel, on the other hand, was able to solve optimization problems that took minutes since training

jobs run for hours to days).

More Scheduling Problems at the Micro Scale. This dissertation considered a narrow set of

micro-scheduling optimizations (efficient parallelization given a budget of training resources). How-

ever, as noted in Chapter 1, various other such optimizations are possible (e.g., low-level code gen-

eration for each hardware architecture, graph substitutions). Considering all of these in a single

unified scheduling framework could further improve resource utilization and reduce training times.

Unified Scheduling and Optimization. As the demand for compute resources grows, deciding

how to share (possibly heterogeneous) resources efficiently among many users is a pressing prob-

lem. Current approaches to resource scheduling typically decouple resource allocation from micro-

scheduling (local optimization) decisions. For example, deciding how to parallelize a distributed job

is typically made after the job has been granted a set of resources from the cluster scheduler. What

happens if we can make these decisions jointly instead? Could we distribute a computation using

heterogeneous resources when the cluster is busy, reducing demand on faster resource types? Could

we optionally decide to use architecture-specific optimizations depending on the allocated hardware

(e.g., older hardware might not efficiently support irregular access patterns)?

Efficient Automated Scheduling Across More Dimensions. Considering all possible paralleliza-

tion dimensions for a single training job, or all possible combinations of micro- and macro-schedules

for a collection of jobs using shared resources, leads to large search spaces. Computing allocations in

these unified problem settings is thus more computationally expensive. Approaches like POP [126]

hint at possible solutions (e.g., by breaking up the original allocation problem into smaller sub-

problems with a subset of the jobs and resources) for certain problem structures, but further work is

needed to make such unified scheduling truly practical.
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Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Analysis of DAWNBench, A Time-to-

Accuracy Machine Learning Performance Benchmark. ACM SIGOPS Operating Systems Review,

53(1):14–25, 2019.

[58] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter

Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. DAWNBench: An End-to-End Deep

Learning Benchmark and Competition. NeurIPS ML Systems Workshop, 2017.

[59] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar, Jin-

liang Wei, Wei Dai, Gregory R Ganger, Phillip B Gibbons, et al. Exploiting Bounded Staleness

to Speed Up Big Data Analytics. In USENIX Annual Technical Conference, pages 37–48, 2014.

[60] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing. GeePS:

Scalable Deep Learning on Distributed GPUs with a GPU-Specialized Parameter Server. In

Proceedings of the Eleventh European Conference on Computer Systems, page 4. ACM, 2016.

[61] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao, Giovanni M Fumarola,

Botong Huang, Kishore Chaliparambil, Arun Suresh, Young Chen, Solom Heddaya, et al.

Hydra: A Federated Resource Manager for Data-Center Scale Analytics. In 16th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 19), pages 177–192, 2019.

[62] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew

Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large Scale Distributed Deep Networks. In

Advances in Neural Information Processing Systems, pages 1223–1231, 2012.

[63] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and QoS-Aware

Cluster Management. In ACM SIGARCH Computer Architecture News, volume 42, pages 127–

144, 2014.

[64] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009.

[65] Michael Denkowski and Alon Lavie. Meteor Universal: Language Specific Translation Evalu-

ation for Any Target Language. In Proceedings of the Ninth Workshop on Statistical Machine

Translation, pages 376–380, 2014.

[66] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint

arXiv:1810.04805, 2018.



BIBLIOGRAPHY 153

[67] Steven Diamond and Stephen Boyd. CVXPY: A Python-Embedded Modeling Language for

Convex Optimization. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.
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