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1 Introduction

Consider a collection of N unit vectors v1, . . . , vN in Rn. Define ε as

ε = max
i 6=j
|vi · vj |2.

In this paper, we try to address the question of what the minimal attainable ε is.
For n = N , it is clear that the optimal value of ε is zero, obtained by letting

v1, . . . , vN be any orthonormal basis. And for N > n, we must have ε > 0 as any collec-
tion of N vectors in n-space is linearly dependent, while any collection of orthonormal
vectors is linearly independent.

For fixed n, it is also easy to see that the minimum value of ε is nondecreasing as
N increases: that is, if ε1 is the minimum value of ε for N unit vectors in Rn, and ε2 is
the minimum value of ε for N + 1 unit vectors in Rn, we must have

ε1 ≤ ε2.

Otherwise, given a configuration of N+1 vectors in Rn with ε = ε2, we could simply
remove one vector and obtain a configuration of N vectors whose ε would be less than
or equal to ε1.

Along the same lines, given a configuration of N vectors in n-space with corre-
sponding ε, we can obtain a collection of N +1 vectors in Rn+1 with the same ε: simply
embed the first N vectors in Rn, then add any vector perpendicular to the hyperplane
in which the N vectors lie. Hence the minimum ε for collections of N + 1 vectors in
Rn+1 is upper-bounded by the corresponding ε for N vectors in Rn.

In Section 2, we shall see that for n = 2, the minimum value of ε is given by

ε = cos2 π/N.

We will then derive in Section 3 a lower bound on ε for any choice of n and N . In
Section 4 we shall see that, for N = n+ 1, the minimum value of ε is given by

ε =
1

n2
,
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and this configuration is produced when the n+1 vectors point to the vertices of the n-
simplex. We will also exhibit an optimal configuration of six vectors in R3; this optimal
configuration produces an ε equal to

ε =
1

5
.

In Section 5, we present the results of a computational approach to computing
minimal values of ε. Finally, in Section 6 we consider the related problem of minimizing

δ = max
i 6=j

vi · vj .

In particular, we will show that in the case where N = n+ 1, the simplex remains the
optimal configuration.

Leon wrote this section.

2 N vectors in R2

In this section, we consider the problem of almost orthogonal vectors in R2.
As stated previously, when N = 2 we can easily obtain an ε equal to 0; a simple

example of such a configuration is [1, 0]T and [0, 1]T .
The problem, however, gets harder for larger N . Let us first consider the specific

case of N = 3. Once we build some intuition for the problem, we will generalize the
result for arbitrary N .

Theorem 2.1. For n = 2 and N = 3, the minimum possible ε is equal to 1/4.

Before proving the above theorem, we state and prove the following lemma, which
will be useful for the general case as well.

Lemma 2.2. Consider n angles θ1, θ2, . . . , θn ∈ [0, π] s.t. θ1 + θ2 + . . .+ θn = π. Then
α = maxi cos

2 θi must equal cos2 θj where j = argmin θi.

π

−1

1

−π

Figure 1: Plot of cos θ versus θ
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Proof. Our argument hinges on the fact that for all θ ∈ [0, π/2], the function cos θ is
decreasing – this is easy to see from Figure 1.

Without loss of generality, let us assume that θ1 ≥ θ2 ≥ . . . ≥ θn. Hence our
theorem statement is equivalent to proving that α is equal to cos2 θn.

We split our proof into two cases,

• θ1, θ2, . . . , θn ∈ [0, π/2]: In this case, it is easy to see that α = cos2 θn from the
fact that cos θ is a decreasing function in θ if θ ∈ [0, π/2].

• One of θ1, θ2, . . . , θn is greater than π/2: Then in particular θ1 > π/2. We see
that cos2 θ1 = cos2(π−θ1) which is equal to cos2(θ2+θ3+ . . .+θn). Furthermore,
π−θ1 = θ2+θ3+ . . .+θn < π/2, which means cos2 θ1 = cos2(θ2+θ3+ . . .+θn) <
cos2 θn. (since θn < θ2 + θ3 + . . .+ θn)

In addition, we see that for all i ∈ {2, 3, . . . , n− 1}, cos2 θi < cos2 θn, from which
we can conclude that α is still equal to cos2 θn.

Given this lemma, we now prove the theorem stated above.

Proof. Observe that for N = 3, the quantity ε for three unit-length vectors v1, v2, v3 ∈
R2 is given by

max{|v1 · v2|2, |v1 · v3|2, |v2 · v3|2}

Because the sign of the dot product of any two vectors does not matter, and because

|v · v′| = |v · (−v′)|

for some arbitrary vector v′, we see that it’s easy to transform the three vectors v1, v2
and v3 so that they all lie in the same semi-circle – to accomplish this, at most one
vector needs to be reflected about the origin (multiplied by −1).

Without loss of generality, let v1 = [1, 0]T . Also, without loss of generality let us
assume that v2 and v3 are above the x-axis, and that v1, v2 and v3 are in anti-clockwise
order.

Let θ1 be the angle between v1 and v2 and θ2 be the angle between v2 and v3. Let
us now define θ3 such that θ1 + θ2 + θ3 = π. Observe that |v1 · v3|2 = cos2(θ1 + θ2) =
cos2(π − θ3) = cos2 θ3, hence we can conclude that

ε = max
i∈{1,2,3}

cos2 θi

From the above lemma, if j = argmin θi and θ1 + θ2 + θ3 = π, then ε = cos2 θj .
Furthermore, we can obtain an upper bound on θj by observing that θ1 + θ2 + θ3 ≥

θj + θj + θj = 3θj ⇒ θj ≤ π/3. Since we’re interested in the smallest such ε and since
the cosine function is a decreasing function in θ between 0 and π/2, the optimum value
of ε for n = 2 and N = 3 is cos2 π/3. Figure 2 shows this optimum configuration.
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(0, 0) x

y

v1 = [1, 0]

v2 = [cosπ/3, sinπ/3]v3 = [cos 2π/3, sin 2π/3]

Figure 2: A configuration of three unit vectors that produce the optimum ε for n =
2, N = 3

Given the above result for N = 3, we attempt to generalize to any integer N in the
following theorem.

Theorem 2.3. For n = 2 and arbitrary N , the optimum value of ε is given by cos2 π/N .

Proof. The proof of this theorem is similar to the proof for the specific case of N = 3.
Again without loss of generality, we can assume that the vectors v1, v2, . . . , vN are

on or above the x-axis, and that v1 = [1, 0]T – if any vector vi were not above the
x-axis, then we could just consider −vi (the reflection of vi about the origin) instead.

Let us define θi as the angle between the vectors vi and vi+1 for i ∈ {1, 2, . . . , N−1},
and let θN be the angle such that θ1 + θ2 + . . .+ θN = π.

Observe that as before, we are interested in maximizing the square of the cosine of
the angle between any two vectors in v1, v2, . . . , vN . Note that here, the angle between
any two vectors in vj and vk in v1, v2, . . . , vN can be expressed as

∑k−1
i=j θi. Note that,

however, if
∑k−1

i=j θi ≤ π/2, then cos2 θj ≥ cos2(
∑k−1

i=j θi) and that if
∑k−1

i=j θi > π/2,
then cos2(

∑k−1
i=j θi) = cos2(π −

∑k−1
i=j θi) which is less than cos2 θi for any i in

{1, 2, . . . , N − 1, N} \ {j, j + 1, . . . , k − 1},
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where j, k ∈ {1, 2, . . . , N − 1} and j 6= k. (the above set must be non-empty since it
must at least contain the element N)

From this we can conclude that ε is equal to maxi cos
2 θi. Then, if j = argmin θi,

we see that ε = cos2 θj by Lemma 2.2.
Since θ1 + θ2 + . . . + θN ≥ N · θj ⇒ θj ≤ π/N , we see that the optimum ε value

is in fact equal to cos2 π/N (again making use of the fact that the cosine function is
decreasing between 0 and π/2).

(0, 0) x

y

x1 = [1, 0]

x2 = [cosπ/5, sinπ/5]

x3 = [cos 2π/5, sin 2π/5]

x5 = [cos 4π/5, sin 4π/5]

x4 = [cos 3π/5, sin 3π/5]

Figure 3: A configuration of five unit vectors that produce the optimum ε for n =
2, N = 5

Figure 3 shows an optimum configuration for n = 2 and N = 5. Note by taking
reflections of x2 and x4 in Figure 3, we get five vectors that form a regular 5-gon – this
can be seen in Figure 4. A similar transformation can be done for all odd N .

Deepak wrote this section. Leon edited this section. Yajit made minor edits to this
section.

3 A lower bound on ε

In the search for a lower bound on ε for arbitrary (n,N) pairs, it is natural to consider
the so-called Gram matrix of our collection of vectors.
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(0, 0) x

y

x1 = [1, 0]

x′2 = [cos 6π/5, sin 6π/5]

x3 = [cos 2π/5, sin 2π/5]

x5 = [cos 4π/5, sin 4π/5]

x′4 = [cos 8π/5, sin 8π/5]

Figure 4: A configuration of five unit vectors that produce the optimum ε for n =
2, N = 5 with x2 and x4 from the previous figure reversed

Definition 3.1. The Gram matrix of a collection of N vectors v1, . . . , vN in Rn is the
N -by-N matrix given by

G(v1, . . . , vN ) =


v1 · v1 v1 · v2 . . . v1 · vn
v2 · v2 v2 · v2 . . . v2 · vn

...
...

. . .
...

vn · v1 vn · v2 . . . vn · vn

 .

Note that the Gram matrix can be written as the product ATA, where A is the
n-by-N matrix

A =

 | | · · · | |
v1 v2 · · · vN−1 vN
| | · · · | |

 .

We can use a well-known lemma on the rank of certain real symmetric matrices to
derive a useful lower bound on ε. Our proof of the lemma follows that of a paper by
Noga Alon1.

1Lemma 2.2, Perturbed identity matrices have high rank: proof and applications, Noga Alon.
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Lemma 3.2. Let A = (ai,j) be a n-by-n real symmetric matrix with ai,i = 1 for all i
and |ai,j | ≤

√
ε for all i 6= j. Let d be the rank of A. Then

ε ≥ n− d
d(n− 1)

.

Proof. We define λ1, . . . , λn to be the eigenvalues of A; write k as the number of nonzero
eigenvalues. Their sum is the trace of A, equal to n. We know that the number of
nonzero eigenvalues of a complex matrix is less than or equal to the rank of the matrix:
so we have that d ≥ k.

Recall the Cauchy-Schwarz inequality for Rn: given (x1, . . . , xn) and (y1, . . . , yn) ∈
Rn, we have (

n∑
i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
.

In our case, let the xi equal λi, and let each yi equal 1 when λi is nonzero and zero
when λi is zero. We get

n2 =

(
n∑

i=1

λi

)2

≤

(
n∑

i=1

λ2i

)
k

so that
n∑

i=1

λ2i ≥
n2

k
≥ n2

d
.

In fact, the sum
∑n

i=1 λ
2
i is equal to the trace of ATA, which we can compute explicitly

to be
∑

i,j a
2
i,j . Hence we have that

∑
i,j

a2i,j ≥
n2

d
.

But because |ai,j | ≤
√
ε for i 6= j, we can bound the left hand side:

n+ n(n− 1)ε ≥

(
j∑

i=1

a2i,i

)
+

∑
i 6=j

a2i,j

 =
∑
i,j

a2i,j .

We obtain, therefore, that

n+ n(n− 1)ε ≥ n2

d
,

and it clearly follows that

ε ≥ n− d
d(n− 1)

.

Using this lemma, we can now prove our lower bound on ε.

7



Theorem 3.3. For any choice of n and N , the minimum value of ε satisfies

ε ≥ N − n
n(N − 1)

.

Proof. Pick any collection of N unit vectors v1, . . . , vN in Rn, and define ε as usual.
Recall the definitions of A and G:

A =

 | | · · · | |
v1 v2 · · · vN−1 vN
| | · · · | |



G(v1, . . . , vN ) = ATA =


v1 · v1 v1 · v2 . . . v1 · vn
v2 · v2 v2 · v2 . . . v2 · vn

...
...

. . .
...

vn · v1 vn · v2 . . . vn · vn


Let d be the rank of G. Since A has rank at most n, so does AT ; since the image space
of G must be contained in the image space of AT , we have that d ≤ n. Note that G
is real and symmetric, with 1s along the diagonal and all other entries with absolute
value bounded by

√
ε. We can apply the lemma to conclude

ε ≥ N − d
d(N − 1)

.

Since d ≤ n, we have as desired

ε ≥ N − n
n(N − 1)

.

We present now a table of the bounds the theorem gives us for varying n and N :

n = 2 n = 3 n = 4

N = 2 0 − −
N = 3 1/4 0 −
N = 4 1/3 1/9 0

N = 5 3/8 1/6 1/16

N = 6 2/5 1/5 1/10

N = 8 3/7 5/21 1/7

N = 12 5/11 3/11 2/11

Table 1: Lower bounds on ε for different values of (n,N), given by Theorem 3.3.

Note that the bounds for n = 2 are not tight, as we proved in Section 2 that
the minimum ε is given by cos2(π/N) when n = 2. We shall see, however, that the
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bounds for ε are in fact tight in the cases where N = n + 1 and where n = 3, N = 6.
One direction for further research might be checking whether the bounds provided by
Theorem 3.3 are indeed attainable for other combinations of n and N .

Leon wrote this section. Deepak made minor edits to this section.

4 Some optimal configurations

Below we provide choices of n and N for which we can achieve the lower bound given
by Theorem 3.3.

4.1 n = 3, N = 6

Let us consider collections of six vectors in R3. As can be seen in Table 1, the lower
bound provided in this case by Theorem 3.3 is 1

5 as well. We shall now see, in fact, that
this lower bound is attainable.

Theorem 4.1. For n = 3 and N = 6, the optimum value of ε is given by 1
5 .

Proof. Consider the following 6 vectors on the unit sphere in R3 with variables a and b.

(a, b, 0), (a, 0, b), (b, 0, a)

(a,−b, 0), (a, 0,−b), (−b, 0, a)

There are three possible dot products we get from computing dot products between
non-equal vectors chosen from these six vectors: ab,−ab, a2 − b2. This gives us two
possible values of ε: (a2 − b2)2, (ab)2. It would seem that an optimal configuration can
be obtained by setting a2 − b2 = ab. If we add in the constraint that a2 + b2 = 1 (since
the six vectors we’re interested in must live on the unit sphere), we get

a =

√
1

10
(5−

√
5

b = −1 +
√
5

2

√
1

10
(5−

√
5.

If we compute ε = (a2 − b2)2 = (ab)2, we see that ε = 1
5 . Coupled with our knowledge

that 1
5 is a lower bound on ε, we conclude that these six points give us an optimal

configuration.

4.2 N = n+ 1

Let us now consider the situation in which we try to minimize ε for n+ 1 vectors in an
n dimensional space. From Theorem 3.3 we know that ε ≥ 1

n2 , so it suffices to show
there exist some n+ 1 vectors in n-space that achieve an ε equal to 1/n2.

To do this, we first introduce the notion of an n-dimensional simplex.
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Definition 4.2. An n-dimensional simplex is given by the convex hull of the n + 1
points in Rn+1 described as having a 1 in a single coordinate and zeros in every other
coordinate.

Figure 5 shows diagrams of a 2-dimensional simplex. Notice that an n dimensional
simplex is constructed in n+ 1 dimensions, but exists in a hyperplane of Rn+1.

(0, 0, 0)

x

y

z

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0, 0) x

y

Figure 5: A 2-dimensional simplex drawn in R3 on the left, and then centered at the
origin in R2 on the right.

Before proceeding with the theorem, we notice that when n = 2, the configuration
of N = 3 vectors that produced the minimum value of ε made up a simplex centered at
the origin (an equilateral triangle).

Theorem 4.3. If N = n + 1, then the minimum value of ε for 1
n2 . This ε is achieved

when the vectors are arranged in an n dimensional simplex centered at the origin.

Proof. Let ε be defined as before for a given set of unit vectors v1, v2, . . . , vn+1. We
show that the origin-centered simplex configuration of the vectors v1, · · · vn+1 produces
a value ε = 1

n2 .
We must first describe the vectors that make up the origin centered simplex. To

center our simplex at the origin we take each vector in the original simplex, and subtract
from it the vector representing the centroid of the original simplex. The centroid of the
original simplex takes the form ( 1

N ,
1
N , . . . ,

1
N ), so the points of the new simplex take

the form (
− 1

N
, · · · ,− 1

N
,
N − 1

N
,− 1

N
, · · · ,− 1

N

)
.
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n = 2 n = 3 n = 4

N = 2 0.0 − −
N = 3 0.25 0.0 −
N = 4 0.5 0.11 0.0

N = 5 0.66 0.21 0.07

N = 6 0.75 0.22 0.14

N = 7 0.82 0.36 0.18

N = 8 0.86 0.44 0.24

N = 9 0.89 0.49 0.26

N = 10 0.91 0.51 0.32

N = 11 0.93 0.55 0.35

N = 12 0.94 0.64 0.41

Table 2: Minimum values of ε for different values of (n,N), as computed by our numer-
ical method

If we renormalize these vectors so that each vector has unit length, we get√
N

N − 1

(
− 1

N
, · · · ,− 1

N
,
N − 1

N
,− 1

N
, · · · ,− 1

N

)
.

Now, taking the dot product between any two such vectors gives us

N

N − 1

(
−2 · N − 1

N2
+ (N − 2) · 1

N2

)
=

N

N − 1
· − 1

N
= − 1

N − 1
= − 1

n
.

So for this configuration ε = 1
n2 . By Theorem 3.3 we know that ε ≥ 1

n2 , so we have
achieved the lower bound.

Yajit wrote this section. Leon edited this section. Deepak made minor edits and
produced the figures.

5 Numerical analysis and associated conjectures

Because of the difficulty involved with visualization in dimensions 3 and above, we used
a computational approach to compute near-optimal epsilon values for different (n,N)
pairs. We describe this method in greater detail below.

Our general intuition tells us that perturbing a set of nearly optimal vectors slightly
could give us a new set of vectors that produce even a smaller epsilon value. Given
this, we start off with a set of random vectors, and try to move these vectors towards
smaller epsilon values.

At every iteration, we try adding a vector whose norm becomes smaller with every
passing iteration, to the already computed optimal vector. We present pseudocode for
this algorithm below.
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Though this approach seems simple, it produces results which seem to agree with
the ε we derived for (2, N) in Section 2, and with the ε we derived for (3, 6) and (n, n+1)
in Section 4. This gives us some confidence in the accuracy of our algorithm. However,
it must be noted that the data does not agree with the bounds produced by Theorem
3.3. There are multiple interpretations for this fact. First, it is possible that the lower
bounds produced by Theorem 3.3 are not always tight – this is easy to see for the case of
(2, N). Alternatively, it is possible that our code simply becomes inaccurate for larger
n and N . This could be a fruitful direction for further research.

As another note, in some instances the algorithm sometimes finds extrema that are
not the extrema we have identified in cases where we provide optimal configurations. For
example, for n = 3, N = 4, the ε value attained is very close to the optimal epsilon value
of 1

9 , however the corresponding configuration is not a tetrahedron. This implies that
in some cases there may be multiple configurations of vectors that are not equivalent
up to rotation yet produce the optimal ε value.

def get_min_epsilon(n, N, num_iter, start_vectors):
min_epsilon = 1.0 # Start off with the worst possible epsilon
current_vectors = start_vectors
i = 0
while (i < num_iter):

temperature = 1.0 / float(i + 1)

# Get perturbing vectors
random_vectors = get_random_vectors(n, N)

# Now perturb current_vectors
new_vectors = list()
for j in xrange(N):

new_vector = list()
for k in xrange(n):

new_vector.append(
current_vectors[j][k] + (

temperature * random_vectors[j][k]))
new_vectors.append(new_vector)

normalize_vectors(new_vectors)

# Accept change only if new_vectors produces a better epsilon
epsilon = compute_epsilon(new_vectors)
if epsilon < min_epsilon:

min_epsilon = epsilon
current_vectors = new_vectors
i += 1

return min_epsilon, current_vectors
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Algorithm: The numerical method used to generate optimum epsilon values – note that
we call this method multiple times with different start_vectors to obtain a reasonable
epsilon estimate

Deepak wrote this section. Leon edited this section. Yajit edited this section.

6 A variation

We now consider a variation of the above problem, where we actually try to place N
unit vectors in n-space as far apart as possible from each other. More concretely, we
define δ as

δ = max
i 6=j

vi · vj ,

and we formalize our problem as finding the N vectors v1, v2, . . . , vN that minimize δ.
Our results on this section concern the case when N = n+ 1. We shall see, in fact,

that the optimal value of δ is given by − 1
n . To begin, we introduce the paralleogram

law.

6.1 The Parallelogram Law

First we give the definition of the norm of a sum of vectors in Rn in terms of the dot
product:

Definition 6.1. For a vector v ∈ Rn the norm of v is the positive value of ||v|| given
by the equation

||v||2 = v · v.

Theorem 6.2 (Parallelogram Law). For vectors v1, · · · , vn ∈ Rn, the following identity
holds

||v1 + · · ·+ vn||2 =
n∑

i=1

||vi||2 + 2
∑

1≤i<j≤n
vi · vj .

Proof. First consider the following identity from the definition of the norm for vectors
u, v ∈ Rn:

||u+ v||2 = (u+ v) · (u+ v) = u · u+ u · v + v · u+ v · v = ||u||2 + ||v||2 + 2u · v.

Now if we let u = v1 and v = v2 + · · ·+ vn we get

||v1 + v2 + · · ·+ vn||2 = ||v1||2 + ||v2 + · · ·+ vn||2 + 2

n∑
i=2

v1 · vi.

If we recurse on ||v2 + · · ·+ vn||2 using induction we get the desired result.
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6.2 Variation: Minimizing the dot product

Given the above bound, we proceed to state and prove the following theorem.

Theorem 6.3. If N = n+ 1 and the vectors in question are denoted v1, · · · , vN , then
over all configurations of these vectors the minimum value of vi ·vj for i 6= j is −1n . This
is achieved when the vectors are arranged in an n dimensional simplex centered at the
origin.

Proof. Let δ = maxi 6=j{vi · vj} for a given set of unit vectors v1, v2, . . . , vn+1, and let
δmin be the minimum possible δ obtained across all unit vectors v1, v2, . . . , vn+1. We
computed in the proof of Theorem 4.3 that for the origin centered simplex, we obtain
a value of δmin = −1

n , so δmin ≤ −1n . So we need only show that δmin ≥ − 1
n as well.

To see that δmin ≥ − 1
n we use the parallelogram law.

Recall that the parallelogram law states that

||v1 + · · ·+ vn+1||2 =
n+1∑
i=1

||vi||2 + 2
∑

1≤i<j≤n+1

vi · vj .

In our case we know three things. First, since the norm of any vector is greater than
or equal to 0, we can conclude that ||v1 + · · ·+ vn+1||2 ≥ 0. Second, vi · vj ≤ δ for any
i < j. Third, ||vi|| = 1. Therefore

0 ≤ n+ 1 + n(n+ 1)δ.

This implies that δ ≥ − 1
n for any set of unit vectors v1, v2, . . . , vn+1, from which we can

conclude that δmin ≥ − 1
n as well.

Since δmin ≤ − 1
n and δmin ≥ − 1

n , we can conclude that δmin = − 1
n .

Yajit wrote this section. Deepak made edits to this section.
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