
WILLUMP: A STATISTICALLY-AWARE END-TO-END OPTIMIZER FOR
MACHINE LEARNING INFERENCE

Peter Kraft 1 Daniel Kang 1 Deepak Narayanan 1 Shoumik Palkar 1 Peter Bailis 1 Matei Zaharia 1

ABSTRACT
Systems for ML inference are widely deployed today, but they typically optimize ML inference workloads
using techniques designed for conventional data serving workloads and miss critical opportunities to leverage
the statistical nature of ML. In this paper, we present WILLUMP, an optimizer for ML inference that introduces
two statistically-motivated optimizations targeting ML applications whose performance bottleneck is feature
computation. First, WILLUMP automatically cascades feature computation for classification queries: WILLUMP
classifies most data inputs using only high-value, low-cost features selected through empirical observations of
ML model performance, improving query performance by up to 5×without statistically significant accuracy loss.
Second, WILLUMP accurately approximates ML top-K queries, discarding low-scoring inputs with an automatically
constructed approximate model and then ranking the remainder with a more powerful model, improving query
performance by up to 10× with minimal accuracy loss. WILLUMP automatically tunes these optimizations’
parameters to maximize query performance while meeting an accuracy target. Moreover, WILLUMP complements
these statistical optimizations with compiler optimizations to automatically generate fast inference code for ML
applications. We show that WILLUMP improves the end-to-end performance of real-world ML inference pipelines
curated from major data science competitions by up to 16×without statistically significant loss of accuracy.

1 INTRODUCTION

The importance of machine learning in modern data centers
has sparked interest in model serving systems, which perform
ML inference and serve predictions to users (Crankshaw
et al., 2017; Wang et al., 2018). However, these model serving
systems typically approach ML inference as an extension of
conventional data serving workloads, missing critical oppor-
tunities to exploit the statistical nature of ML inference. Most
modern model serving systems, such as Clipper (Crankshaw
et al., 2017), Amazon Sagemaker, and Microsoft AzureML,
treat ML inference as a black box and implement generic
systems optimizations such as caching and adaptive batching.
Some systems, such as Pretzel (Lee et al., 2018), also apply
traditional compiler optimizations such as loop fusion.

These optimizations are useful for ML inference applications,
just as they are for web applications or database queries.
However, unlike other serving workloads, ML inference
workloads have unique statistical properties that these
optimizations do not leverage. Two of these properties are:

• ML models can often be approximated efficiently
1Department of Computer Science, Stanford University.

Correspondence to: Peter Kraft <kraftp@cs.stanford.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA, 2020.
Copyright 2020 by the author(s).

for many inputs: For example, the computer vision
community has long used “model cascades” where a
low-cost model classifies “easy” inputs and a higher-
cost model classifies inputs where the first is uncertain,
resulting in much faster inference with negligible
change in accuracy (Viola & Jones, 2001; Wang et al.,
2017). In contrast, existing multi-purpose model
serving systems utilize the same logic for all data inputs.

• ML models are often used for higher-level queries,
such as top-K queries. However, existing model serving
systems do not optimize these query modalities. As
we show, tailoring inference to the query (in our work,
top-K queries) can improve performance.

To leverage these opportunities for optimization, we present
WILLUMP, a system for automatically performing end-to-
end optimization of ML inference workloads. WILLUMP
targets a common class of ML inference applications: those
whose performance bottleneck is feature computation. In
these applications, a pipeline of transformations converts
raw input data into numerical features that are then used by
an ML model to make predictions. These applications are
common, especially when performing ML inference over
tabular data. For example, a recent study of ML inference
at Microsoft found that feature computation accounted for
over 99% of the runtime of some production ML inference
applications (Lee et al., 2018). WILLUMP improves ML

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

inference performance through two novel optimizations:

1) Automatic End-to-end Cascades: ML inference
pipelines often compute many features for use in a model.
In classification problems, because ML applications are
amenable to approximation, it is often possible to classify
data inputs using only a subset of these features. For example,
in a pipeline that detects toxic online comments, we may
need to compute expensive TF-IDF features to classify some
comments, but can classify others simply by checking for
curse words.

However, selectively computing features is challenging be-
cause features vary by orders of magnitude in computational
cost and importance to the model, and are often computation-
ally dependent on one another. Therefore, one cannot pick an
arbitrary set of features (e.g,. the least computationally inten-
sive) and expect to efficiently classify data inputs with them.

To address these challenges, WILLUMP uses a cost model
based on empirical observations of ML model performance
to identify important but inexpensive features. With these
features, WILLUMP trains an approximate model that
can identify and classify “easy” data inputs, but cascade
“hard” inputs to a more powerful model. For example, an
approximate model for toxic comment classification might
classify comments with curse words as toxic but cascade
other comments. WILLUMP automatically tunes cascade
parameters to maximize query performance while meeting an
accuracy target. The concept of cascades has a long history in
the ML literature, beginning with Viola & Jones (2001), but
to the best of our knowledge, WILLUMP is the first system
to automatically generate feature-aware and model-agnostic
cascades from input programs. WILLUMP’s cascades deliver
speedups of up to 5× on real-world ML inference pipelines
without a statistically significant effect on accuracy.

2) Top-K Query Approximation: WILLUMP automati-
cally optimizes an important class of higher-level application
queries: top-K queries. Top-K queries request a ranking
of the K top-scoring elements of an input dataset. They are
fundamentally asymmetric: predictions for high-scoring data
inputs must be more precise than predictions for low-scoring
data inputs. Existing model serving systems such as Clipper
or Pretzel execute top-K queries naively, scoring every
element of the input dataset and thus wasting time generating
precise predictions for low-scoring data inputs. WILLUMP
instead leverages top-K query asymmetry by automatically
constructing a computationally simple approximate pipeline
to filter out low-scoring inputs, maximizing performance
while meeting a target accuracy level. Approximation
improves performance on real-world serving workloads by
up to 10×, with negligible impact on accuracy.

WILLUMP complements end-to-end cascades and top-

K query approximation with compiler optimizations.
WILLUMP compiles a subset of Python to machine code
using Weld (Palkar et al., 2017; 2018), in the process
applying optimizations such as loop fusion and vectorization.
These optimizations improve query throughput by up to 4×
and median query latency by up to 400×.

We evaluate WILLUMP on a broad range of pipelines curated
from entries to major data science competitions hosted by
Kaggle, CIKM, and WSDM. Overall, WILLUMP improves
query throughput by up to 16× and median query latency
by up to 500×. WILLUMP’s novel optimizations contribute
greatly to this performance: end-to-end cascades improve
performance by up to 5× and top-K query approximation
by up to 10×. WILLUMP also improves the performance of
other model serving systems; integrating WILLUMP with
Clipper improves end-to-end query latencies by up to 10×.
All performance improvements come without statistically
significant accuracy loss.

In summary, we make the following contributions:

• We introduce WILLUMP, a statistically-aware end-to-end
optimizer for ML inference pipelines.
• We describe a method for automatically cascading feature

computation, improving ML inference performance by
up to 5×without statistically significant accuracy loss.
• We describe a method for automatically approximating

top-K queries, improving performance by up to 10×with
minimal accuracy loss.

2 BACKGROUND

In this section, we provide background on ML inference
pipelines, cascades, and top-K queries.

2.1 ML Inference Pipelines

WILLUMP optimizes ML inference applications whose
performance is bottlenecked by feature computation. In
such applications, ML inference is performed by a pipeline
of transformations which receives raw input from clients,
transforms it into numerical features (such as by computing
statistics about a raw string input), and executes an ML
model on the features to generate predictions. In this paper
we define features as numerical inputs to an ML model.

It is relatively common for ML inference applications to be
bottlenecked by feature computation, especially when using
less expensive ML models such as linear classifiers and
boosted trees. For example, a recent study of ML inference at
Microsoft found feature computation accounted for over 99%
of the runtime of some production ML inference applications
(Lee et al., 2018). Feature computation often dominates
performance because it encompasses many common but
relatively expensive operations in machine learning, such

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

Input String

Word-Level

TF-IDF

Logistic

Regression Model

Char-Level

TF-IDF

Word-Level TF-IDF

Features

Char-Level TF-IDF

Features

Figure 1. A simplified toxic comment classification pipeline. The
pipeline computes word- and character-level TF-IDF features from
a string and predicts from them with a logistic regression model.

as querying remote data stores (Agarwal et al., 2014).

Recent developments in automated machine learning
(AutoML) on tabular data have increased the importance
of feature computation. Researchers have developed
algorithms such as Google AutoML Tables (Lu, 2019) and
Deep Feature Synthesis (Kanter & Veeramachaneni, 2015)
(whose open-source implementation is widely used (Kanter,
2018)) to automatically generate ML inference pipelines de-
pendent on powerful but computationally expensive features.
WILLUMP optimizes the performance of these pipelines.

We diagram an ML inference pipeline in Figure 1. This
pipeline, which we call toxic, is a simplified version of
one of our real-world benchmark pipelines, taken from
Kaggle (Tunguz, 2018). It predicts whether an online
comment is toxic. toxic transforms an input string into
numerical features with two TF-IDF vectorizers: one
word-level and one character-level. toxic then executes a
logistic regression model on these features to predict whether
the input was toxic. In the real pipeline toxic is based on,
feature computation accounts for over 99% of runtime.

2.2 Cascades

Cascades are an approximation technique for ML inference
first developed for computer vision (Viola & Jones, 2001).
ML inference is amenable to approximation because ML
models return probabilistic predictions instead of exact
answers. However, using an approximate model on every
input incurs a high accuracy cost. Cascades reduce this
accuracy cost for classification problems by leveraging
differing data input difficulty.

In most classification workloads, many data inputs are
“easy” to classify in the sense that a computationally simple
model can accurately classify them (Viola & Jones, 2001).
Therefore, a system need not approximate every data input.
Instead, it can accurately classify easy data inputs with a
computationally simple approximate model and cascade
to a more expensive model for hard data inputs. Existing
cascades systems such as NoScope (Kang et al., 2017) and
Focus (Hsieh et al., 2018) have shown that cascades can dra-
matically improve ML inference performance with minimal
accuracy cost, but they are specialized to one model type.

def pipeline(x1, x2):
input = lib.transform(x1, x2)
preds = model.predict(input)
return preds

01010101010
11101101110
10110101101
01011111010
10101101101

Willump Optimization

Infer

Transformation

Graph

Optimizations:

1. End-to-end Cascades

2. Top-K Query Approximation

Compile

optimized

graph through

Weld

def willump_pipeline(x1, x2):
preds = compiled_code(x1, x2)
return preds

Optimized Pipeline

User Pipeline

Figure 2. A diagram of WILLUMP’s architecture. WILLUMP infers
a transformation graph from a user pipeline, optimizes it, compiles
it through Weld, and returns an optimized pipeline.

Unlike existing cascades systems, WILLUMP automatically
optimizes an entire ML inference pipeline, training an
approximate model which depends on only a subset of the
original model’s features. For example, an approximate
model for toxic might compute only word-level (and
not character-level) TF-IDF features. We call WILLUMP’s
cascades optimization end-to-end cascades. We discuss it
in more detail in Section 4.

2.3 Top-K Queries

Top-K queries are an important class of ML inference query.
They request a ranking of the K top-scoring elements of a
dataset. Top-K queries are especially common in recom-
mender systems (Cheng et al., 2016). Database researchers
have proposed several algorithms for approximating top-K
queries (Theobald et al., 2004). However, these algorithms
require scoring functions to be monotonic (Ilyas et al., 2008);
this is rarely true for ML models. Some ML recommender
systems use fast retrieval models to approximate top-K
queries (Cheng et al., 2016), but they develop these models
manually. Because ML top-K optimization is not automatic,
existing ML model serving systems such as Clipper or Pret-
zel do not optimize top-K queries, instead naively scoring
all elements of the input dataset. WILLUMP automatically
approximates top-K queries, using an approximate model
dependent on a subset of the original model’s features to
identify and discard low-scoring inputs before ranking
remaining inputs with the original model. We describe our
approximation algorithm in detail in Section 4.

3 WILLUMP OVERVIEW

WILLUMP is an optimizer for ML inference pipelines.
WILLUMP users write ML inference pipelines in Python as
functions from raw inputs to model predictions. Specifically,

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

these functions must register model training, prediction,
and scoring functions, must be written as a series of explicit
Python function calls, and must represent data using NumPy
arrays, SciPy sparse matrices, or Pandas DataFrames.

WILLUMP operates in three stages: graph construction,
optimization, and compilation. We diagram WILLUMP’s
workflow in Figure 2.

Graph Construction Stage: WILLUMP’s graph construc-
tion stage converts an ML inference pipeline into a graph of
transformations. Figure 1 is an example transformation graph.
We discuss transformation graph construction in Section 5.1.

Optimization Stage: WILLUMP’s optimization stage ap-
plies its end-to-end cascades and top-K query approximation
optimizations to the transformation graph. We discuss these
optimizations in Section 4.

Compilation Stage: WILLUMP’s compilation stage trans-
forms the optimized graph back into a Python function that
calls the optimized pipeline. In the process, it compiles some
graph nodes to optimized machine code using Weld (Palkar
et al., 2017). We discuss graph compilation in Section 5.2.

4 OPTIMIZATIONS

In this section, we describe WILLUMP’s core optimizations:
end-to-end cascades and top-K query approximation.

4.1 End-to-End Cascades

End-to-end cascades speed up ML inference pipelines that
perform classification by classifying some data inputs with
an approximate model dependent on a subset of the original
model’s features. When using cascades, WILLUMP first at-
tempts to classify each data input with the approximate model.
WILLUMP returns the approximate model’s prediction if its
confidence exceeds a threshold, which we call the cascade
threshold, but otherwise computes all remaining features and
classifies with the original model. This is shown in Figure 3.

WILLUMP automatically constructs end-to-end cascades
from an ML inference pipeline, its training data, and
an accuracy target. First, WILLUMP partitions features
into computationally independent groups and computes
their computational cost and importance to the model.
Then, WILLUMP identifies several sets of computationally
inexpensive but predictively powerful features. For each
selected set of features, WILLUMP trains an approximate
model, chooses a cascade threshold based on the accuracy
target, and uses these to estimate the cost of accurately
making predictions using cascades with those features.
WILLUMP constructs cascades using the selected set of
features that minimizes this cost. We sketch this procedure

Model

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction Prediction

Original Model

Cascades

Optimization Confidence > Threshold

Yes No

Compute All

Features

Figure 3. WILLUMP’s cascades optimization. WILLUMP attempts
to predict data inputs using the approximate model, but cascades
to the original model if the approximate model is not confident.

Input Data

Machine Learning Model

Preprocessing

C=48

Feature 1

C=1

Feature 2

C=1

Feature 3

C=60

Feature 4

C=10

Group 1

C = 50

I = 0.3

Group 2

C = 60

I = 0.3

Group 3

C = 10

I = 0.2

Figure 4. An example cascades optimization pipeline. Nodes are
assigned to feature groups and marked with their cost (C); groups
are also marked with their importance (I). WILLUMP might train
an approximate model on Feature Groups 1 and 3 as they maximize
sum of feature importance given maximum cost cmax=60.

in Algorithm 1 and discuss it in the remainder of this section.

4.1.1 Partitioning Features

The first step of constructing cascades is partitioning features
into computationally independent sets, which we call feature
groups. This is necessary because in most ML inference
pipelines, many features are generated by the same upstream
operators. Such features are not computationally indepen-
dent: it is inefficient to compute some of them without also
computing the rest. For example, in Figure 4, Features 1 and
2 both depend on the expensive Preprocessing node, so it
is inexpensive to compute one after computing the other.

To partition features into groups, WILLUMP first identifies
the transformation graph node that computed each feature.
It then traces those nodes’ ancestors to identify their depen-
dencies. For example, in Figure 4, Feature 1 depends on
itself and on the Preprocessing node. WILLUMP assigns two
features to the same feature group if the cost of their shared
dependencies exceeds the cost of either feature’s unshared
dependencies. For example, in Figure 4, it assigns Features 1

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

Algorithm 1 Training an end-to-end cascade.
1: procedure TRAINCASCADE(Graph G, Data D,

Accuracy Target at)
2: T,H← train holdout split(D)
3: F← identify feature groups(G) §4.1.1
4: for f ∈F do §4.1.2
5: imp(f)=permutation importance(f,T,H)
6: cost(f)=computational cost(f,G,D)

7: min cost=∞
8: for cmax∈C do
9: . C = { 0.1 · cost(F), 0.2 · cost(F). . .}

10: S=select feature groups(F,cmax) §4.1.3
11: m= train approximate model(S,T) §4.1.4
12: t,hS=cascade threshold(m,H,at) §4.1.5
13: . t is the cascade threshold.
14: . hS is the fraction of H that m can classify.
15: cost=hS ·cost(S)+(1−hS)·cost(F) §4.1.6
16: if cost<min cost then
17: best S, best m, best t = S, m, t
18: min cost=cost
19: return best S, best m, best t

and 2 to Feature Group 1 because the cost of their shared de-
pendency, the Preprocessing node (C =48), exceeds the cost
of either feature’s unshared dependencies (C =1 for both).

4.1.2 Computing Feature Group Statistics

The second step of constructing cascades is to calculate
two statistics for each feature group: its permutation impor-
tance (Breiman, 2001; Molnar, 2019) and its computational
cost. WILLUMP uses these statistics to select features for
the approximate model. The permutation importance of a
feature group is a model-agnostic measure of its value to the
model’s predictions (Fisher et al., 2018). The computational
cost of a feature group is defined empirically as the amount
of time it takes to compute the feature group on a sample of
the training set.

4.1.3 Query Cost Minimization

After identifying feature groups and computing their
statistics, WILLUMP selects a set S of computationally
inexpensive but predictively powerful feature groups from
which to train an approximate model. WILLUMP selects the
features that minimize the expected prediction time pt of an
inference query given the accuracy target at. This time is:

pt= hS ·cost(S)+(1−hS)·cost(F) (1)

Here, F is the set of all features and hS is the percentage of
data inputs that a cascade constructed from S would classify
with the approximate model given the accuracy target at. hS

is computed using the cascade threshold, which we set later.

Unfortunately, pt is difficult to optimize directly. At a high
level, WILLUMP approximates optimizing it by selecting
several locally optimal sets of feature groups, measuring
the performance of cascades constructed from each, and
choosing the best of them.

To select a locally optimal set of feature groups, WILLUMP
considers a candidate maximum feature cost cmax. For
each candidate cmax, WILLUMP selects the set S of feature
groups that minimizes pt given cost(S) = cmax. This set
cannot score better than the set that maximizes hS given
cost(S) ≤ cmax. That set, in turn, is equivalent to the set
from which one could train an approximate model with
maximum accuracy given cost(S)≤cmax.

Unfortunately, determining approximate model accuracy for
all combinations of feature groups is impractical. Instead,
WILLUMP estimates approximate model accuracy as the
sum of the permutation importance scores of the features
on which the model was trained. Therefore, for each
candidate cmax, WILLUMP selects the set S of feature
groups with maximum sum of permutation importance given
cost(S) ≤ cmax. This is a knapsack problem; we solve it
with dynamic programming.

For each selected set of feature groups, WILLUMP constructs
cascades and measures pt. This requires training an approx-
imate model and choosing a cascade threshold for each set.

4.1.4 Training Approximate Models

WILLUMP trains an approximate model from a selected
set of feature groups by computing the appropriate features
from the training set and training a model of the same class
as the original on them.

4.1.5 Choosing Cascade Thresholds

To choose the cascade threshold for an approximate model,
WILLUMP classifies every element in a held-out portion
of the training set using both the approximate and original
models, noting the confidences of the approximate model’s
predictions. For example i, we call the approximate model’s
prediction si, the original model’s prediction fi, and the
approximate model’s confidence ci. The cascade threshold
t is the lowest value such that if we predict every data input
i with si if ci>t and fi otherwise, accuracy on the held-out
set would be above the accuracy target at.

4.1.6 Selecting Optimal Features

Using the approximate models and cascade thresholds,
WILLUMP computes pt (from Equation 1) for each selected
set of feature groups. WILLUMP constructs cascades
from the selected set of feature groups, and corresponding
approximate model and cascade threshold, that minimizes pt.

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

4.2 Top-K Query Optimization

In top-K queries, users request a ranking of the K top-scoring
elements in a dataset. Top-K queries are fundamentally
asymmetric: they must score high-scoring elements with
more precision than low-scoring elements. WILLUMP
leverages this asymmetry to approximate top-K queries by
filtering out low-scoring candidates with an approximate
model, then ranking the remainder with the original model.
WILLUMP automatically constructs these approximate
models during model training using an algorithm similar to
that in Section 4.1. It requires four user-specified parameters:
a distributionK of typical values of K, a distributionN of
typical values of the dataset size N , an accuracy metric (by
default precision), and and a lower accuracy bound at.

To evaluate a top-K query, WILLUMP scores all dataset
elements with an approximate model trained on a selected set
S of feature groups, then ranks the rSK top-scoring elements
with the original model. WILLUMP chooses the set S and
parameter rS that minimize the expected execution time pt
of a top-K query given the accuracy bound at. This cost is:

pt=cost(S)·N+(cost(F)−cost(S))·rSK (2)

Here, F is the set of all features, andN andK are the means
ofN andK.

To select a set S of feature groups, WILLUMP considers
several candidate maximum feature costs cmax. Like in
Section 4.1, for each cmax, WILLUMP selects the candidate
set S of feature groups with maximum sum of permutation
importance given cost(S)≤cmax.

For each candidate set S of feature groups, WILLUMP
chooses a value of rS , which determines the number of
inputs to be ranked by the original model. WILLUMP
chooses the smallest value of rS that satisfies the accuracy
bound at. WILLUMP determines this value by executing
sample top-K queries on a held-out portion of the training
set. WILLUMP first trains an approximate model and scores
all elements of the held-out set. It then draws many values
K and N from K andN . For each pair (K,N), it draws a
sample of size N from the held-out set and measures the
accuracies of approximate top-K queries run on that sample
with different values of rS . WILLUMP chooses the smallest
value of rS for which accuracy is 95% certain to be greater
than at 95% of the time (these thresholds can be changed
by the user). Specifically, it chooses the smallest rS such
that if we consider each sample’s outcome to be a Bernoulli
random variable (where accuracy on the sample is either≥
or < at), the 95% binomial proportion confidence interval
of this variable is entirely above 95%.

Using this procedure, WILLUMP can compute rS and,
therefore, the expected query execution time (Equation 2) for
any candidate set S of feature groups. WILLUMP selects the

candidate set S and corresponding rS value that minimize
expected top-K query execution time given at.

5 WILLUMP API AND COMPILATION

In this section we describe WILLUMP’s API and compilation
procedure.

5.1 WILLUMP API and Graph Construction

WILLUMP can automatically optimize an ML inference
pipeline implemented as a Python function which follows
three rules. First, the user must register model training,
inference, and scoring functions that conform to a simple
API; for classification pipelines, the inference function must
return a confidence metric. This rule guarantees WILLUMP’s
optimizations can be agnostic to model APIs. Second, every
statement in the pipeline must be an explicit Python function
call; the final statement, whose output is returned, must
be to the model prediction function. This rule guarantees
WILLUMP can trace data flow. Third, the pipeline must
represent all data as NumPy arrays, SciPy sparse matrices,
or Pandas DataFrames. This rule guarantees WILLUMP can
marshal data to and from Weld. We show a simple example
pipeline function using scikit-learn below:

def toxic_comment_classification(strings):
wf = word_vectorizer.transform(strings)
cf = char_vectorizer.transform(strings)
return predict(model, wf, cf)

If an ML inference pipeline conforms to the above rules,
WILLUMP can use standard compiler techniques to parse
it into a directed acyclic graph of transformations. Each
function called by the pipeline becomes a node in the
transformation graph. While parsing, WILLUMP checks
these functions against a list of known functions which it
can compile to Weld. If the function is in the list, WILLUMP
marks it compilable, otherwise WILLUMP leaves it in Python.

5.2 Transformation Graph Compilation

After optimizing a transformation graph, WILLUMP com-
piles the nodes marked compilable to optimized machine
code using Weld (leaving the remaining nodes in Python) and
packages them back into a Python function. Weld (Palkar
et al., 2018) is an intermediate representation (IR) and
compiler for data processing operations. Weld implements
many compiler optimizations over its IR, including loop
fusion, data structure preallocation, and vectorization. These
are similar to the compiler optimizations implemented by
some existing model serving systems such as Pretzel (Lee
et al., 2018). The set of operators WILLUMP can compile
to Weld is extensible; users can add Weld IR for custom
operators. WILLUMP compiles graphs in four stages:

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

Benchmark Description Feature-Computing Operators Prediction Type Model

Toxic (Tunguz, 2018) Predict whether online comment is toxic. String processing, N-grams, TF-IDF Classification Linear
Music (rn5l, 2018) Predict whether user will like song. Remote data lookup, data joins Classification GBDT
Product (Nguyen et al., 2017) Classify quality of online store listing. String processing, N-grams, TF-IDF Classification Linear
Instant (Kikani, 2019) Approximate a function over tabular data. Model Stacking Classification Ensemble
Purchase (Koehrsen, 2019) Predict customer’s next purchase. Automatically Generated Features Classification GBDT
Price (Lopuhin, 2018) Predict price of online good. Feature encoding, string processing, TF-IDF Regression NN
Credit (Aguiar, 2018) Predict probability a loan is defaulted. Remote data lookup, data joins Regression GBDT

Table 1. Properties of WILLUMP’s benchmark workloads.

Sorting: In the first stage of compilation, WILLUMP sorts
the transformation graph into an ordered list of nodes which
minimizes the number of transitions between compilable
nodes (which are executed in Weld) and Python nodes. This
is desirable because each transition requires marshaling
data between languages and because the Weld optimizer
can apply end-to-end optimizations like loop fusion over
large Weld blocks. WILLUMP sorts the graph topologically,
then heuristically minimizes the number of transitions by
moving each Python node to the earliest allowable location.
We observe that this is effective in our evaluation because
Python nodes are typically either preprocessing nodes
(which execute before any Weld nodes) or parts of the model
(which execute after all Weld nodes).

Code Generation: In the second stage of compilation,
WILLUMP compiles every compilable node to the Weld IR.
WILLUMP compiles nodes using parameterized Weld tem-
plates. For example, it compiles a TF-IDF vectorization node
with a template containing a TF-IDF implementation written
in Weld and parameterized to use several different tokeniz-
ers, n-gram ranges, and norms. After generating Weld code,
WILLUMP coalesces Weld and uncompiled Python code seg-
ments together, creating blocks of Weld and Python code.

Drivers: In the third stage of compilation, WILLUMP gen-
erates a driver, a Python extension that calls into Weld, for
each block of Weld code. WILLUMP identifies each block’s
input and output variables, then generates C++ driver code
that marshals each block’s input variables into Weld data
structures, executes its Weld code, and marshals its output
variables into Python data structures. To minimize driver
latency, we developed several new Weld types for WILLUMP,
including dataframe and sparse matrix types, which drivers
can create in O(1) time from their Python equivalents.

Compilation: In the final stage of compilation, WILLUMP
combines the Python blocks and Weld drivers into a Python
program. WILLUMP compiles drivers into Python C
extensions, inserts calls to them in the appropriate places,
packages the resulting all-Python program as a Python
function, and returns it.

6 EVALUATION

We evaluate WILLUMP and its optimizations on seven
high-performing entries to major data science competitions
at CIKM, Kaggle, and WSDM. We demonstrate that:

1. WILLUMP improves batch inference throughput by up
to 16× and point query latency by up to 500×. Of this
speedup, up to 5× comes from end-to-end cascades,
and the rest from compilation.

2. WILLUMP improves top-K query performance by up
to 31×. Of this speedup, up to 10× comes from top-K
query approximation, and the rest from compilation.

3. WILLUMP improves the performance of other model
serving systems. WILLUMP improves end-to-end Clip-
per performance by up to 9×. Moreover, WILLUMP’s
optimizations improve performance over compiler
optimizations similar to Pretzel’s1.

6.1 Experimental Setup

We ran all benchmarks on an n1-standard-8 Google Cloud
instance with four Intel Xeon CPUs running at 2.20 GHz
with 30 GB of RAM. We stored remote data tables on a Redis
3.2.6 server on a GCP instance with a single Intel Xeon CPU
running at 2.20 GHz with 30 GB of RAM.

6.2 Benchmarks

We benchmark WILLUMP on the seven real-world workloads
described in Table 1, all curated from entries in major data
science competitions. All benchmarks are single-threaded.
One benchmark, purchase, uses features automatically
generated by the Deep Feature Synthesis algorithm (Kanter
& Veeramachaneni, 2015); these features consist largely
of aggregations such as averages and counts over relational
data. Two benchmarks, credit and music, query data
from stores which can be located either locally or remotely.
We query music remotely in all benchmarks; we query
credit remotely only in top-K benchmarks because it
performs regression and cannot be cascaded. We show all
benchmarks’ transformation graphs in Figure 5.

1We cannot compare against Pretzel directly as its code and
benchmarks are not publicly available

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

a) toxic b) product c) instant d) price

e) purchase f) music

e) credit

Figure 5. Transformation graphs of all benchmark workloads. In-
puts are in white, models in gray, and transformation nodes in black.

P C C+C

0

5K

10K

15K

T
hr

ou
gh

pu
t (

pr
ed

s/
s)

690 2K

10K

a) toxic

P C C+C

0

50K

100K

150K

22K

88K 94K

b) music

P C C+C

0

500

1000

270 270

650

c) music-remote

P C C+C

0

10K

20K

30K

40K

T
hr

ou
gh

pu
t (

pr
ed

s/
s)

4K

13K

28K

d) product

P C C+C

0

2K

4K

6K

3K 3K

5K

e) instant

P C C+C

0

100

200

130 130

210

f) purchase

P C C+C

0

5K

10K

T
hr

ou
gh

pu
t (

pr
ed

s/
s)

10K 11K

N/A

g) price

P C C+C

0

1000

2K

3K

4K

3K

4K

N/A

h) credit

Figure 6. WILLUMP performance on offline batch queries. P means
(unoptimized) Python, C means compiler optimizations only, C+C
means compiler and cascades optimizations.

6.3 Evaluating WILLUMP

WILLUMP Throughput. We first evaluate WILLUMP on
offline batch queries, showing results in Figure 6. First, we
apply WILLUMP’s compiler optimizations. These improve
the performance of all compilable benchmarks by up to 4.3×.

Then, we apply end-to-end cascades to all classification
benchmarks. For all benchmarks, we set an accuracy target
of 0.1% less than the accuracy of the original model, but we
did not observe a statistically significant change in accuracy
for any benchmark.

End-to-end cascades improve benchmark performance
by up to 5×. Interestingly, cascades are least effective
on music, which queries pre-computed features from an
in-memory database. This is very fast when compiled, so

100 101

Latency (ms)

0.0

0.5

1.0

C
D

F

a) toxic

101

Latency (ms)

0.0

0.5

1.0

b) music

100

Latency (ms)

0.0

0.5

1.0

c) product

101 102

Latency (ms)

0.0

0.5

1.0

C
D

F

d) instant

101

Latency (ms)

0.0

0.5

1.0

e) music-remote

101 102

Latency (ms)

0.0

0.5

1.0

C
D

F

g) price

102

Latency (ms)

0.0

0.5

1.0

f) credit

Compile + Cascade
Compile
Python

Figure 7. WILLUMP latency CDFs on online point queries, with one
outstanding query at a time. Benchmarks in the second row contain
no compilable operators; we only apply cascades. Benchmarks in
the third row do not perform classification; we only apply compiler
optimizations.

feature computation accounts for a small portion of overall
runtime and potential gains from cascades are limited.
In music-remote, we moved the features to a remote
database, so querying them was more costly and cascades
became more effective, providing a 2.4× speedup.

WILLUMP Latency. We next evaluate WILLUMP on
online point queries, showing results in Figure 7. We evaluate
all benchmarks except purchase; the Python implementa-
tion of the deep feature synthesis algorithm was not designed
for low-latency queries. When evaluating, we make one
query at a time; each query contains one data input. We first
apply WILLUMP’s end-to-end compiler optimizations to all
compilable benchmarks. These decrease p50 and p99 latency
by 1.3-400×. The large speedup on music and credit
is enabled by WILLUMP’s low-latency Weld drivers,
which call into WILLUMP’s Weld code far faster than the
benchmarks’ original Pandas implementations can call into
their underlying C code; this is critical for point operations.

We then apply end-to-end cascades to all classification
benchmarks. These improve p50 latency by up to 2.5× for
most benchmarks. However, because cascades only speed up
prediction of some data inputs (those classified by the approx-
imate model), they do not improve p99 latency. Cascades are
least effective on product and music; in both cases this
is because the latency contribution of feature computation
is small compared to that of the model. We demonstrate
this with an alternate version of music, music-remote,

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

P C C+A

0

10K

20K

30K

T
hr

ou
gh

pu
t (

pr
ed

s/
s)

690 2K

21K

a) toxic

P C C+A

0

50K

100K

150K

22K

88K
106K

b) music

P C C+A

0

500

1000

1K

300 300

790

c) music-remote

P C C+A

0

10K

20K

30K

T
hr

ou
gh

pu
t (

pr
ed

s/
s)

4K

13K

23K

d) product

P C C+A

0

2K

4K

6K

3K 3K

5K

e) instant

P C C+A

0

200

400

600

130 130

530

f) purchase

P C C+A

0

1000

2K

3K

4K

T
hr

ou
gh

pu
t (

pr
ed

s/
s)

3K

4K 4K

g) credit

P C C+A

0

500

1000

430 430

1200

h) credit-remote

P C C+A

0

5K

10K

15K

10K 11K
13K

i) price

Figure 8. WILLUMP performance on top-K queries. P means
(unoptimized) Python, C means compiler optimizations only, C+A
means compiler and top-K approximation optimizations.

which queries features from remote databases instead of an
in-memory store. As in the previous section, more expensive
feature computation makes cascades more effective; they
decrease p50 latency of music-remote by 2.5×.

Top-K Queries. We now evaluate WILLUMP on top-K
queries, showing results in Figure 8. We use K=20, query
over the entire validation set, and set a minimum precision
of 0.95.

We first apply WILLUMP’s end-to-end compiler optimiza-
tions to compilable benchmarks; these perform the same as
in the batch setting. We then apply WILLUMP’s top-K query
approximation optimization. This produces performance
improvements ranging from 1.3-10×with precision always
above the minimum. Smaller speedups occur in benchmarks
with relatively expensive models, such as music, credit,
and price, as well as in benchmarks where differences be-
tween scores of high-scoring candidates were small (less
than a hundredth of a percent), like product. Bench-
marks with less expensive models and more differentiation
between high-scoring candidates, like music-remote,
credit-remote, and toxic, have larger speedups.

Integration with Clipper. We next evaluate integration
of WILLUMP with Clipper, showing results in Figure 9.
We optimize product and toxic with WILLUMP’s
compiler and cascades optimizations and serve with Clipper,
evaluating end-to-end query latencies. At a batch size of 1,
WILLUMP improves p50 latency by 2.5-3× and p99 latency
by 4.5-12×. At a batch size of 100, WILLUMP improves p50
latency by 4-9× and p99 latency by 5-25×. These speedups
are slightly smaller than in prior experiments but increase

0 50 100 150

Latency (ms)

0

1

C
D

F

a) toxic-1

0 2000 4000 6000

Latency (ms)

0

1

b) toxic-100

0 20 40 60 80

Latency (ms)

0

1

C
D

F

c) product-1

50 100 150 200

Latency (ms)

0

1

d) product-100
Willump-Clipper
Clipper

Figure 9. End-to-end latency CDFs on queries made using Clipper
with and without WILLUMP optimization at batch sizes of 1 and 100.

Toxic Music Product Instant Purchase Price Credit

Cascades 1.1× 6.8× 2.2× 1.0× 1.7× N/A N/A
Top-K 1.1× 6.9× 1.8× 1.0× 1.6× 3.8× 3.9×

Table 2. Ratios of WILLUMP to Python training times when training
end-to-end cascades and top-K query approximations.

with batch size because Clipper has significant overheads,
including serialization, RPC processing time, etc.

WILLUMP Overhead. Finally, we evaluate the training
times of WILLUMP’s end-to-end cascades and top-K query
approximation optimizations, showing results in Table 2.
WILLUMP’s end-to-end training times are 1.0-6.9× as long
as the end-to-end training times of the original pipelines. The
increase in training time is largest for benchmarks whose
end-to-end training time is dominated by model training and
comes largely from the need to train several approximate
models during approximate model feature selection. We
believe WILLUMP’s tradeoff of train performance for
inference performance is acceptable because for many real
ML applications, training consumes far fewer resources than
inference (Hazelwood et al., 2018).

7 RELATED WORK

Model Serving: Researchers and commercial vendors
have developed many model serving systems. Some are
general-purpose, serving different models from different
frameworks. These include research systems, such as Clipper
(Crankshaw et al., 2017) and Rafiki (Wang et al., 2018), and
commercial platforms, such as Amazon’s Sagemaker and
Microsoft’s Azure ML, among others (Olston et al., 2017;
Apache, 2019). These systems aim to reduce the difficulty
of deploying ML models. Typically, they consider models
to be black boxes and implement only pipeline-agnostic
optimizations such as end-to-end caching and adaptive
batching (Crankshaw et al., 2017). However, recently
researchers have developed more powerful optimizations,
such as the use of erasure codes to improve accuracy in
the face of unavailability (Kosaian et al., 2019). As an
optimizer for ML inference pipelines, WILLUMP synergizes
with general-purpose model serving systems, significantly

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

improving their performance with its statistically-aware
optimizations, as we show in Section 6.3.

Other model serving systems are application-specific. For
example, Noscope (Kang et al., 2017) and Focus (Hsieh et al.,
2018) improve performance of neural nets querying large
video datasets. Major web companies have also developed
specialized systems for video recommendation (Davidson
et al., 2010) and ad-targeting (Cheng et al., 2016), among
other tasks. Also related is LASER (Agarwal et al., 2014), de-
signed for linear models used in advertising, which provides
latency guarantees by dropping slow-to-compute features.
WILLUMP generalizes ideas from these application-specific
systems, such as their use of cascades.

Cascades: Cascades were initially developed for rapid
object detection by applying more complex classifiers to
more object-like regions of an image (Viola & Jones, 2001).
They have been widely applied to image and video tasks such
as pedestrian detection (Cai et al., 2015) and face recognition
(Sun et al., 2013). Some application-specific model serving
systems, such as NoScope and Focus, utilize cascades.

Cost-Sensitive Training Algorithms: ML researchers
have proposed many algorithms for incorporating feature
cost into model training, similar to WILLUMP’s cascades.
Prominent examples include Xu et al. (2014), Wang et al.
(2011), and Raykar et al. (2010). However, unlike WILLUMP,
these systems are neither general nor automatic. They
perform no graph or dataflow analysis, assume all features
are computationally independent, require users to provide
costs for all features, and restrict users to specific types of
models (such as linear models for Wang et al. (2011) or
cascades of CART trees for Xu et al. (2014)).

Top-K Approximation: Database researchers have pro-
posed many algorithms for optimizing and approximating
top-K queries. These algorithms, including MPro (Chang
& Hwang, 2002) and approximate TA (Theobald et al.,
2004), among others (Ilyas et al., 2008), score candidates
by querying one data source at a time; they drop candidates
whose probability of scoring in the top K given the queried
data sources is too low. However, they do not translate well
to ML top-K queries. They assume that scoring functions
execute on a set of data sources which can be queried
independently, but ML models execute on features which
are often computationally interdependent. They also assume
that scoring is done by a monotonic and usually linear
aggregation function, but ML models are typically nonlinear
and offer no monotonicity guarantees.

Some systems for performing ML top-K queries use a
retrieval model to select high-scoring inputs to rank with a
more powerful model (Cheng et al., 2016). This is similar
to WILLUMP’s use of an approximate model, but retrieval
models are typically manually constructed while WILLUMP
constructs approximate models automatically. Therefore,

to the extent of our knowledge, WILLUMP is the first system
to automatically optimize ML top-K queries.

ML Optimizers and Compilers: Several prior systems
have developed optimizers and compilers for ML workloads.
Unlike WILLUMP, many specialize in improving neural
network performance. For example, TVM (Chen et al., 2018)
compiles deep neural nets to different architectures and
NVIDIA TensorRT (Sharma & Moroney, 2018) is a library
optimized for fast inference performance on NVIDIA GPUs.
Additional optimization techniques include knowledge distil-
lation (Hinton et al., 2015) and approximate caching (Kumar
et al., 2019). Some systems, like WILLUMP, optimize ML
pipeline performance. For example, KeystoneML (Sparks
et al., 2017) optimizes distributed training pipelines. Closer
to WILLUMP is Pretzel (Lee et al., 2018), which improves
ML inference performance through end-to-end compiler
optimizations such as loop fusion and vectorization. These
are similar to the optimizations WILLUMP implements
through Weld compilation, but unlike WILLUMP Pretzel
does not implement statistical optimizations such as cascades
or top-K approximation.

8 CONCLUSION

This paper presents WILLUMP, a statistically-aware end-to-
end optimizer for ML inference. WILLUMP leverages unique
properties of ML inference applications to automatically
improve their performance through statistical optimizations,
such as end-to-end cascades and top-K query approximation.
WILLUMP improves the performance of real-world ML
inference pipelines by up to an order of magnitude over
existing systems.

9 ACKNOWLEDGMENTS

This research was supported in part by affiliate members and
other supporters of the Stanford DAWN project—Ant Fi-
nancial, Facebook, Google, Infosys, NEC, and VMware—as
well as Toyota Research Institute, Northrop Grumman, Cisco,
SAP, and the NSF under CAREER grant CNS-1651570. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation. Toyota Research Institute (“TRI”) provided
funds to assist the authors with their research but this article
solely reflects the opinions and conclusions of its authors
and not TRI or any other Toyota entity.

REFERENCES

Agarwal, D., Long, B., Traupman, J., Xin, D., and Zhang,
L. Laser: A Scalable Response Prediction Platform
for Online Advertising. In Proceedings of the 7th ACM
International Conference on Web Search and Data

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

Mining, pp. 173–182. ACM, 2014.

Aguiar, J. LightGBM with Simple Features, October 2018.
URL https://www.kaggle.com/jsaguiar/
lightgbm-with-simple-features.

Apache. Prediction IO, Apr 2019. URL https:
//predictionio.apache.org/start/.

Breiman, L. Random Forests. Machine learning, 45(1):
5–32, 2001.

Cai, Z., Saberian, M., and Vasconcelos, N. Learning
Complexity-aware Cascades for Deep Pedestrian Detec-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 3361–3369, 2015.

Chang, K. C.-C. and Hwang, S.-w. Minimal Probing: Sup-
porting Expensive Predicates for Top-k Queries. In Pro-
ceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, pp. 346–357. ACM, 2002.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. TVM: An Au-
tomated End-to-End Optimizing Compiler for Deep Learn-
ing. In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pp. 578–594, 2018.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T.,
Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir,
M., et al. Wide & Deep Learning for Recommender Sys-
tems. In Proceedings of the 1st Workshop on Deep Learn-
ing for Recommender Systems, pp. 7–10. ACM, 2016.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-
zalez, J. E., and Stoica, I. Clipper: A Low-Latency Online
Prediction Serving System. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
17), pp. 613–627, 2017.

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T.,
Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston,
B., et al. The Youtube Video Recommendation System.
In Proceedings of the fourth ACM Conference on
Recommender Systems, pp. 293–296. ACM, 2010.

Fisher, A., Rudin, C., and Dominici, F. All Models are
Wrong but Many are Useful: Variable Importance for
Black-Box, Proprietary, or Misspecified Prediction
Models, using Model Class Reliance. arXiv preprint
arXiv:1801.01489, 2018.

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U.,
Dzhulgakov, D., Fawzy, M., Jia, B., Jia, Y., Kalro, A., et al.
Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), pp. 620–629. IEEE, 2018.

Hinton, G., Vinyals, O., and Dean, J. Distilling the
Knowledge in a Neural Network, 2015.

Hsieh, K., Ananthanarayanan, G., Bodik, P., Venkataraman,
S., Bahl, P., Philipose, M., Gibbons, P. B., and Mutlu,
O. Focus: Querying Large Video Datasets with Low
Latency and Low Cost. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pp. 269–286, 2018.

Ilyas, I. F., Beskales, G., and Soliman, M. A. A Survey
of Top-k Query Processing Techniques in Relational
Database Systems. ACM Computing Surveys (CSUR), 40
(4):11, 2008.

Kang, D., Emmons, J., Abuzaid, F., Bailis, P., and Zaharia,
M. NoScope: Optimizing Neural Network Queries over
Video at Scale. Proceedings of the VLDB Endowment,
10(11):1586–1597, 2017.

Kanter, J. M. and Veeramachaneni, K. Deep Feature
Synthesis: Towards Automating Data Science Endeavors.
In 2015 IEEE International Conference on Data Science
and Advanced Analytics, DSAA 2015, Paris, France,
October 19-21, 2015, pp. 1–10. IEEE, 2015.

Kanter, M. Featuretools Year in Review, Dec 2018.
URL https://blog.featurelabs.com/
featuretools-2018-in-review/.

Kikani, P. IG PCA + NuSVC + KNN +
LR Stack, July 2019. URL https://
www.kaggle.com/prashantkikani/
ig-pca-nusvc-knn-lr-stack.

Koehrsen, W. A Machine Learning Framework with an
Application to Predicting Customer Churn, August 2019.
URL https://github.com/Featuretools/
predict-customer-churn.

Kosaian, J., Rashmi, K., and Venkataraman, S. Parity
Models: Erasure-Coded Resilience for Prediction Serving
Systems. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pp. 30–46, 2019.

Kumar, A., Balasubramanian, A., Venkataraman, S.,
and Akella, A. Accelerating Deep Learning Infer-
ence via Freezing. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 19), Ren-
ton, WA, July 2019. USENIX Association. URL
https://www.usenix.org/conference/
hotcloud19/presentation/kumar.

Lee, Y., Scolari, A., Chun, B.-G., Santambrogio, M. D.,
Weimer, M., and Interlandi, M. PRETZEL: Opening
the Black Box of Machine Learning Prediction Serving
Systems. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pp.
611–626, 2018.

https://www.kaggle.com/jsaguiar/lightgbm-with-simple-features
https://www.kaggle.com/jsaguiar/lightgbm-with-simple-features
https://predictionio.apache.org/start/
https://predictionio.apache.org/start/
https://blog.featurelabs.com/featuretools-2018-in-review/
https://blog.featurelabs.com/featuretools-2018-in-review/
https://www.kaggle.com/prashantkikani/ig-pca-nusvc-knn-lr-stack
https://www.kaggle.com/prashantkikani/ig-pca-nusvc-knn-lr-stack
https://www.kaggle.com/prashantkikani/ig-pca-nusvc-knn-lr-stack
https://github.com/Featuretools/predict-customer-churn
https://github.com/Featuretools/predict-customer-churn
https://www.usenix.org/conference/hotcloud19/presentation/kumar
https://www.usenix.org/conference/hotcloud19/presentation/kumar

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

Lopuhin, K. Mercari Golf, Feb 2018. URL https:
//www.kaggle.com/lopuhin/kernels.

Lu, Y. An End-to-End AutoML Solu-
tion for Tabular Data, May 2019. URL
https://ai.googleblog.com/2019/05/
an-end-to-end-automl-solution-for.
html.

Molnar, C. Interpretable Machine Learning.
2019. https://christophm.github.io/
interpretable-ml-book/.

Nguyen, T. T., Fani, H., Bagheri, E., and Titericz, G. Bagging
Model for Product Title Quality with Noise. 2017.

Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao,
L., Li, F., Rajashekhar, V., Ramesh, S., and Soyke, J.
Tensorflow-Serving: Flexible, High-Performance ML
Serving. arXiv preprint arXiv:1712.06139, 2017.

Palkar, S., Thomas, J. J., Shanbhag, A., Narayanan, D., Pirk,
H., Schwarzkopf, M., Amarasinghe, S., and Zaharia, M.
Weld: A Common Runtime for High Performance Data
Analytics. In Conference on Innovative Data Systems
Research (CIDR), 2017.

Palkar, S., Thomas, J., Narayanan, D., Thaker, P., Palamut-
tam, R., Negi, P., Shanbhag, A., Schwarzkopf, M., Pirk, H.,
Amarasinghe, S., et al. Evaluating End-to-End Optimiza-
tion for Data Analytics Applications in Weld. Proceedings
of the VLDB Endowment, 11(9):1002–1015, 2018.

Raykar, V. C., Krishnapuram, B., and Yu, S. Designing
Efficient Cascaded Classifiers: Tradeoff between Accu-
racy and Cost. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 853–860. ACM, 2010.

rn5l. WSDM Music Recommendation Challenge,
Jan 2018. URL https://github.com/rn5l/
wsdm-cup-2018-music.

Sharma, S. and Moroney, L. Announcing TensorRT inte-
gration with TensorFlow 1.7 , Mar 2018. URL https:
//developers.googleblog.com/2018/03/
tensorrt-integration-with-tensorflow.
html.

Sparks, E. R., Venkataraman, S., Kaftan, T., Franklin, M. J.,
and Recht, B. KeystoneML: Optimizing Pipelines for
Large-Scale Advanced Analytics. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE),
pp. 535–546. IEEE, 2017.

Sun, Y., Wang, X., and Tang, X. Deep Convolutional Net-
work Cascade for Facial Point Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3476–3483, 2013.

Theobald, M., Weikum, G., and Schenkel, R. Top-k Query
Evaluation with Probabilistic Guarantees. In Proceedings
of the Thirtieth International Conference on Very Large
Databases-Volume 30, pp. 648–659. VLDB Endowment,
2004.

Tunguz, B. Logistic Regression with Words
and Char N-grams, Mar 2018. URL https:
//www.kaggle.com/tunguz/kernels.

Viola, P. and Jones, M. Rapid Object Detection Using a
Boosted Cascade of Simple Features. pp. 511. IEEE, 2001.

Wang, L., Lin, J., and Metzler, D. A Cascade Ranking Model
for Efficient Ranked Retrieval. In Proceedings of the
34th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 105–114.
ACM, 2011.

Wang, W., Gao, J., Zhang, M., Wang, S., Chen, G., Ng, T. K.,
Ooi, B. C., Shao, J., and Reyad, M. Rafiki: Machine
Learning as an Analytics Service System. Proceedings
of the VLDB Endowment, 12(2):128–140, 2018.

Wang, X., Luo, Y., Crankshaw, D., Tumanov, A., Yu,
F., and Gonzalez, J. E. IDK Cascades: Fast Deep
Learning by Learning Not to Overthink. arXiv preprint
arXiv:1706.00885, 2017.

Xu, Z., Kusner, M. J., Weinberger, K. Q., Chen, M.,
and Chapelle, O. Classifier Cascades and Trees for
Minimizing Feature Evaluation Cost. The Journal of
Machine Learning Research, 15(1):2113–2144, 2014.

A MICROBENCHMARKS

In this section, we analyze the behavior and overhead of
WILLUMP’s optimizations in more detail.

Cascades Tradeoffs. We first examine the behavior of
WILLUMP’s cascades optimization. For each classification
benchmark, we graph performance and accuracy at varying
cascade thresholds in Figure 10. On each graph, a blue
circle marks the performance of the original model and an
orange X that of the approximate model; points in between
are cascaded models with varying cascade thresholds. As
a reminder, the cascade threshold is the confidence the
approximate model must have in a prediction to return the
prediction and not cascade to the original model.

For all benchmarks, cascaded models with high cascade
thresholds are faster than the original model but have similar
accuracy. WILLUMP’s cascades algorithm automatically
chooses these cascade thresholds to maximize performance
without statistically significant accuracy loss. On each graph,
the point marked with a red diamond is the chosen threshold.

https://www.kaggle.com/lopuhin/kernels
https://www.kaggle.com/lopuhin/kernels
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://github.com/rn5l/wsdm-cup-2018-music
https://github.com/rn5l/wsdm-cup-2018-music
https://developers.googleblog.com/2018/03/tensorrt-integration-with-tensorflow.html
https://developers.googleblog.com/2018/03/tensorrt-integration-with-tensorflow.html
https://developers.googleblog.com/2018/03/tensorrt-integration-with-tensorflow.html
https://developers.googleblog.com/2018/03/tensorrt-integration-with-tensorflow.html
https://www.kaggle.com/tunguz/kernels
https://www.kaggle.com/tunguz/kernels

WILLUMP: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

0 20K
Throughput (rows/s)

0.650

0.675

0.700

0.725

0.750

A
cc

ur
ac

y

a) toxic

0 100K
Throughput (rows/s)

0.70

0.72

0.74

b) music

0 50K
Throughput (rows/s)

0.500

0.525

0.550

0.575

0.600
c) product

0 5K
Throughput (rows/s)

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

d) instant

0 200
Throughput (rows/s)

0.66

0.68

0.70
e) purchase

Figure 10. Throughput versus accuracy on all classification
benchmarks with varying cascade thresholds. A blue circle marks
performance of the original model, an orange X marks performance
of the approximate model, and a red diamond marks WILLUMP’s
chosen cascade threshold.

For most benchmarks, as the cascade threshold decreases,
performance continues to improve but accuracy falls off.
This shows cascades are working as intended. At high
cascade thresholds, the approximate model classifies easy
data inputs and the original model classifies hard data inputs,
so accuracy is high. At low thresholds, the approximate
model must classify hard data inputs, so accuracy falls.

Compilation Times We also evaluate WILLUMP’s
pipeline compilation times. We find these rarely exceed
thirty seconds. The exceptions are benchmarks which query
in-memory data stores (music and credit); it takes
WILLUMP several minutes to optimize them as it must
convert the data stores into a format which Weld can query.

B ARTIFACT APPENDIX

B.1 Abstract

This artifact contains the implementation of the WILLUMP
optimizer described in this paper. Furthermore, this artifact
contains the scripts and datasets needed to reproduce the key
performance results in this paper, specifically the batch, point,
and top-K performance comparisons in Figures 6, 7, and 8.

B.2 Artifact check-list (meta-information)
• Program: The WILLUMP optimizer implemented in Python.
• Data set: Competition datasets for each benchmark, all pro-

vided or linked to.
• Run Time Environment: Python 3 (Tested with Python

3.6.8).
• Metrics: For batch (Figure 6) and top-K (Figure 8) experi-

ments, pipeline throughput. For point (Figure 7) experiments,
pipeline latency.

• Output: Throughputs and latencies (p50 and p99) printed to
stdout.

• Experiments: Run each benchmark in the batch, point, and
top-K setting with no optimizations, compiler optimizations
only, and compiler optimizations plus cascades or top-K ap-
proximation optimizations.

• Publicly available?: Yes.

B.3 Description

B.3.1 How delivered

The artifact is hosted on GitHub at https://github.com/
stanford-futuredata/Willump. The artifact, its instruc-
tions, its benchmark scripts, and its datasets are publicly available.
Additionally, an archival version of the artifact is available at
https://doi.org/10.5281/zenodo.3687193.

B.3.2 Software dependencies

Experiments were run using Ubuntu 18.04 with Python 3.6.8.
Full installation instructions including dependencies are here:
https://github.com/stanford-futuredata/
Willump/blob/master/README.md.

B.3.3 Data sets

The datasets of the competitions our benchmarks were curated
from were used. All are included in the artifact or linked to
from https://github.com/stanford-futuredata/
Willump/blob/master/BENCHMARKS.md.

B.4 Installation

Full installation instructions are here: https://github.com/
stanford-futuredata/Willump/blob/master/
README.md.

B.5 Experiment workflow

Full benchmark instructions are here: https://github.com/
stanford-futuredata/Willump/blob/master/
BENCHMARKS.md.

B.6 Evaluation and expected result

Artifact evaluation is expected to reproduce the performance com-
parisons in Figures 6, 7, and 8 of the paper. We expect the results
of evaluation to show a similar performance trend as these figures.

https://github.com/stanford-futuredata/Willump
https://github.com/stanford-futuredata/Willump
https://doi.org/10.5281/zenodo.3687193
https://github.com/stanford-futuredata/Willump/blob/master/README.md
https://github.com/stanford-futuredata/Willump/blob/master/README.md
https://github.com/stanford-futuredata/Willump/blob/master/BENCHMARKS.md
https://github.com/stanford-futuredata/Willump/blob/master/BENCHMARKS.md
https://github.com/stanford-futuredata/Willump/blob/master/README.md
https://github.com/stanford-futuredata/Willump/blob/master/README.md
https://github.com/stanford-futuredata/Willump/blob/master/README.md
https://github.com/stanford-futuredata/Willump/blob/master/BENCHMARKS.md
https://github.com/stanford-futuredata/Willump/blob/master/BENCHMARKS.md
https://github.com/stanford-futuredata/Willump/blob/master/BENCHMARKS.md

